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Abstract

We test whether a war-related factor model derived from textual analysis of me-

dia news explains the cross-section of expected asset returns. The war risk factor is

motivated by, and builds on a semi-supervised topic model to extract discourse topics

from 7,000,000 New York Times stories spanning 160 years, which has been shown

to be powerful in predicting aggregate market returns. We find that war risk factors

help predict the cross section of returns across a diverse range of testing assets, deriv-

ing from both traditional and machine learning construction techniques, encompassing

both public and own-constructed sources, and spanning a wide range of 138 anoma-

lies. These findings are consistent with assets that have poor returns during periods

of heightened war risk earning higher risk premia, or alternatively, that a factor based

upon war sensitivity captures investor mispricing of war risk. The return premium

associated with the war factor is incremental to factors from prominent factor mod-

els and other measures of news-based uncertainty. Our results are further buttressed

through the factor mimicking portfolio of war risk. War risk passes the protocol of

factor identification and is shown to be a genuine risk factor.
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1 Introduction

The rare disaster risk may explain long-standing asset-pricing questions, such as the equities

premium and volatility puzzles, which have generated increased attention in recent years.

The frequency and magnitude of rare disasters are crucial to calibrate the rare disaster risk

models. Studies have resurrected Rietz (1988)’s initial “catastrophe” justification for the

equity premium. Barro (2006) measures the size and frequency of disasters over the 20th

century from the gross domestic product (GDP) declines caused by World War I, the Great

Depression, and World War II in many nations. He shows, given appropriate calibrations,

they are significant enough to provide a substantial equity premium. Gourio (2008)’s model

of time-varying catastrophe risk delivers similar outcomes. Gabaix (2012) expands the Barro-

Rietz model by including cross-sectional and time-series variance in the projected catastrophe

loss. Wachter (2013) extends the Barro-Rietz model by including a time-varying probability

of rare disasters and shows that her model can explain the high equity premium and high

volatility in the stock market while yielding a low mean and volatility for the government bill

rate. The explanation of equity premium due to rare disaster risk leads to a natural cross-

sectional implication: assets like gold that perform well during natural disasters should have

low average (or predicted) returns. Our study aims to test this conclusion.

Along with the empirical evidence of expected return variations such as (1) small stocks

earn higher returns than large stocks on average, (2) value stocks earn higher returns than

growth stocks on average, and this effect is more pronounced among small stocks, and (3)

stocks which went up recently (winners) earn higher returns than past losers on average–the

momentum anomaly, can war exposure explain these asset pricing conundrums as a risk

measure? We endeavor to respond to this inquiry.

Although the theory about disaster risk is established, the investigation expedition still

faces some obstacles, mainly due to imperfect disaster risk measures. Individual nations sel-

dom experience major disasters, which impedes the empirical testing of rare disaster models.

On average, a country experiences an international political crisis once every 15 years, a

full-scale war once every 74 years, and an internal conflict once every 119 years (Berkman,

Jacobsen, and Lee, 2011). The challenge of empirical verification is substantial because

calibrations based on catastrophe models are very sensitive to underlying assumptions.

Even if most of these crises did not evolve into a full-scale war or significant conflict, the
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forward-looking nature of financial market pricing enables us to determine the influence of

changes in the likelihood of uncommon catastrophes on stock market prices. As a result,

although previous research infers the presence of a disaster risk premium from asset prices,

we explicitly examine whether a correlation exists between changes in disaster risk and

stock market price fluctuations. Our analysis circumvents the issue of a limited sample size

embedded in the use of actual rare disasters by concentrating on a much larger sample of

possible rare disasters: attention to war risk.

Our approach is based on Hirshleifer, Mai, and Pukthuanthong (2023), who construct

war risk topics (hereafter, War) from the New York Times (NYT ) since its inception in the

1880s. They apply a novel semi-supervised topic modeling method (sLDA) to extract topics

from news. The sLDA allows them to perform a rolling estimation using the information

available only then. This allows them to avoid any forward-looking bias, a core issue of

asset return predictability. In addition, the technique allows them to adjust their semantic

changes over time. News is an excellent instrument to construct war risk. First, it presents

market attention to war risk, which captures current expectations. Editors cater news to

their audience. Our war risk complies with Merton (1973)’s ICAPM spirit. Merton (1973)

contends that state variables that capture future investment opportunities should impact the

agents current consumption. Such state variables present fundamental risks; hence, assets

that covary with such state variables should command a risk premium. Our war risk fits

this notation.

Our war risk has a daily frequency and high variation that match stock returns, thereby,

we address the drawback of macro variables, which are known for being stale and having low

frequency. In theory, macroeconomic variables are good proxies for state variables (Cochrane,

1996); they do not perform empirically due to their data limit. Our measure presents an

alternative proxy of state variables filling these gaps.

An extended data series like ours of 180 years is essential for inferring cross-sectional asset

pricing tests. We construct war risk as a shock and its traded version by factor mimicking

portfolios. We apply Pukthuanthong, Roll, and Subrahmanyam (2019)’s protocol of factor

identification comprising two conditions: the necessary condition testing whether factors are

related to the covariance of returns and the sufficient condition testing whether candidate

factors that pass the necessary condition can price assets cross-sectionally. Pooling all candi-

date factors from all seminal factor models together with the War factor, we find War factor

2



survives both conditions; thus, it is a genuine priced risk factor.

Testing assets play a crucial role in cross-sectional asset pricing test (Giglio, Xiu, and

Zhang (2021)). The low dimensionality of testing assets favors the factors constructed by cor-

responding characteristics Lewellen, Nagel, and Shanken (2010)). To address these concerns,

we employ a large collective set of testing assets that span multi-dimensions of characteristics

based on sorting and machine learning construction, and collected from public sources and

constructed by us: (1) 138 long-short anomalies from Hou, Xue, and Zhang (2020) (hereafter,

HXZ), (2) 1372 single-sorted portfolios from HXZ, (3) 360 machine learning based nonlinear

portfolios from Bryzgalova, Pelger, and Zhu (2020), (4) our own constructed 128 anomalies

to replicate the first set, and (5) our own constructed 2190 nonlinear portfolios.1

Interestingly, War best prices Bryzgalova, Pelger, and Zhu (2020)’s machine learning-

based nonlinear portfolios (hereafter, ML-based nonlinear portfolios). War as a solo factor

model outperforms some prominent factor models with an R2 of 43% when the test assets are

the ML-based nonlinear portfolios. When War is added to the multifactor benchmarks, the

average cross-sectional pricing error or intercept is reduced significantly from 3% to almost

zero percent. War as a sole factor generates the lowest and most insignificant standard

pricing error compared to other benchmarks (0.4% vs. 3%). War has the largest and

most significant cross-sectional prices of risk with a magnitude of -33% when pricing ML-

based nonlinear portfolios, compared to -17% when pricing anomalies and -8% when pricing

single-sorted portfolios. Bryzgalova, Pelger, and Zhu (2020) show that ML-based nonlinear

portfolios capture the complex interactions among many characteristics and the nonlinear

impact of characteristics on returns. They span the SDF, are more challenging to price than

conventional cross-sections, and generate the highest possible Sharpe ratio out-of-sample.

War seems to possess a unique property that prices these assets very well. We leave it for

future research to investigate further.

Our result supports the disaster risk theory asserting that assets providing returns during

high war risk periods perform like a hedging asset and command negative risk premium.

Within the literature on disaster risks and news, Manela and Moreira (2017) (henceforth,

MM) applies a machine learning approach to construct a news-based measure of uncertainty

from the front page of WSJ from 1890, called NVIX and Caldara and Iacoviello (2022) con-

structs uncertainty index from news using dictionary approach. We control their measures,

1The data is publicly available from the author’s website.

3



and our War factor is distinct. Our risk premium is still negative and significant, not being

subsumed by either of these measures. See (Hirshleifer, Mai, and Pukthuanthong, 2023) for

the detail of our differences from these measures.

Notably, we are the first study examining whether an empirical measure of rare disaster

risks captured by War demands a significant risk premium. Gabaix (2012) and Gourio

(2008) argue that assets that provide high returns during a high disaster risk period should

perform as a hedging asset and thus have lower expected returns. To test this argument,

we use innovations in War as a factor and perform a robustness test using factor-mimicking

portfolios. Both forms of the War factor confirm that War prices 118 anomalies and 1173

characteristics-sorted portfolios. It demands a negative price of risk: assets that pay off

during war times are good hedges and demand lower expected returns.

In this paper, we deepen our understanding of war risk. We enhance Hirshleifer, Mai,

and Pukthuanthong (2023), who show War predicts stock and bond returns out of sample.

This study shows that the War factor can explain stock returns cross-sectionally. While, to

our knowledge, no prior study has attempted to evaluate the catastrophe model using the

cross-section of average stock returns, a few studies do analogous empirical exercises. First,

several studies examine the imbalance between upside and adverse risk. According to Ang,

Hodrick, Xing, and Zhang (2006), the downside risk is more significant than the upside risk.

They do not, however, differentiate between high downside risk and modest downside risk.

War risks are distinct from the downside beta studied by Ang, Hodrick, Xing, and Zhang

(2006) and jump beta studied by Cremers, Halling, and Weinbaum (2015) because our

measures are exposed to changes in the probability of future bear market states. In contrast,

downside beta and jump beta are sensitivities to present realizations of downside market

states and jumps, respectively. Our measure differs from the volatility beta investigated

by Ang, Hodrick, Xing, and Zhang (2006), Chang, Christoffersen, and Jacobs (2013), and

Cremers, Halling, and Weinbaum (2015) because war risk concentrates on left-tail outcomes.

The significance of these discrepancies has been emphasized in both theoretical (Gabaix

(2012); Wachter (2013)) and empirical (many time-series studies) research (Santa-Clara and

Yan (2010); Bollerslev and Todorov (2011); Christoffersen, Jacobs, and Ornthanalai (2012);

Andersen, Fusari, and Todorov (2015); Hirshleifer, Mai, and Pukthuanthong (2023)).

Our measure is also distinct from Lu, Ott, Cardie, and Tsou (2011)’s bear beta constructed

from the S&P500 index option. While Ang, Hodrick, Xing, and Zhang (2006)’s downside
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beta analyzes how the price of a stock responds when a conflict happens. Lu and Murray

(2019)’s bear beta captures the likelihood of a future conflict, and the bear market risk

increases, even if a war does not occur. Our measure of War risk captures both as it is

based on news, which captures the realization and the market expectation. In short, War

risk includes time dimensions captured by downside and bear betas.

Specific stock prices will respond more strongly than others to the rise in war risk. Noting

that the market portfolio is made of all stocks and is thus vulnerable to the same sources

of risk as individual stocks, including war risk. It is vital to highlight that the price of the

market portfolio will likewise respond. We account for this impact by including the market

excess return into the two-pass regression to estimate the price of war risk. If a stock’s

response to War risk is reflected by its exposure to the market portfolio, then this stock

will have a War beta of zero. War betas sustain and are nonzero for stocks with greater or

lesser exposure to War market risk than the market portfolio.

Lastly, Gourio (2008) develops a theory to explain the pricing ability of war risk cross-

sectionally and conducts the test. He could not find a significant risk premium and admits

this is due to a poor estimator of disaster risk. (Berkman, Jacobsen, and Lee, 2011) also

test whether war risk prices the Fama-French 30 industry portfolios after controlling for the

Fama-French three-factor model. We differ by considering a more extensive set of test assets

and benchmarking our results against all leading factor models.

2 Method

This paper uses the sLDA model (Lu, Ott, Cardie, and Tsou, 2011) to extract news narra-

tives. In this section, we briefly discuss the setup of the model and our implementation.

2.1 Model

This paper uses a probabilistic topic model to extract latent topic weights from news articles.

Topic models are developed based on the core idea that documents are mixtures of topics in

which each topic is a probability distribution over words (Blei, 2012; Steyvers and Griffiths,

2007). Under topic models, we assume that text documents are generated according to a

generative process. To make a new document, one first chooses a distribution over topics
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(i.e., document-topic distribution). Then for each word in the document, one picks a topic

randomly from this document-topic distribution and subsequently draws a word from that

topic using its distribution over words (i.e., topic-word distribution). In this setup, the

document-topic distribution for each document, topic-word distribution for each topic (the

same across documents), and topic assignment for each word are unobserved variables that

can be inferred from the observable word frequencies in the document collection. In other

words, we can use standard statistical techniques to revert the generative process, inferring

the topics responsible for generating a collection of documents (Steyvers and Griffiths, 2007).

Among topic models, latent Dirichlet allocation (LDA) introduced by Blei, Ng, and Jordan

(2003) and further developed by Griffiths and Steyvers (2004) is the most widely used. Under

LDA, a document d is generated under the following hierarchical process:

• The word weight vector ϕk of topic k follows a prior Dirichlet distribution governed by

parameter β: ϕk ∼ Dirichlet(β).2

• The topic weight vector θd of document d follows a prior Dirichlet distribution governed

by parameter α: θd ∼ Dirichlet(α).34

• For each word w in document d, we

– randomly select from a topic from the document-topic distribution:

2For illustration, assume a topic k has three words: word1, word2, and word3 with the weights given to
the three words capturing by ϕk = [w1, w2, w3] with w1 + w2 + w3 = 1. The model assumes that this ϕk

vector follows a Dirichlet distribution. The random variable here is the vector of weights representing the
words in the topic. If a topic has word1, word1, word1, word2, word2, then word3, w1=0.5, w2=0.333, and
w3 = 0.17. These are all unobserved and must be estimated from sampling from the posterior distribution.

3Similarly, assume document d has four topics topic1, topic2, topic3, topic4 with the weights given to
these topics captured by θd = [w1, w2, w3, w4] with w1 +w2 +w3 +w4 = 1. The model assumes that this θd
vector follows a Dirichlet distribution. The random variable here is the vector of weights representing the
topics in the document. The weights are calculated from the samples drawn from the posterior distribution
of the model. Based on these assignments, we generate topic assignments for all words via sampling from the
posterior and compute the word weights ϕk and topic weights θd. We iteratively do this until the convergence
of the posterior distribution.

4In the univariate case, assume that the distribution is binomial. For each trial, the success rate is p,
which is the parameter of the binomial distribution. In Bayesian statistics, we assume that the parameter
p follows the Beta distribution. We can generalize this to the multivariate case. Instead of just success (p)
and failure (1-p), we have multiple classes; thus, p is a vector. In Bayesian statistics, we assume p follows
a Dirichlet distribution (a generalization of Beta). As a simple example, in a jar, there are three types
of marbles red, blue, and green, with the probability of p1, p2, and p3. The number of marbles of each
type thus follows the multinomial distribution characterized by the parameter p=[p1, p2, p3]. In frequentist,
we directly estimate p = [p1, p2, p3] with our data. In Bayesian, we assume that p = [p1, p2, p3] follows
a Dirichlet distribution. We then multiply the multinomial and Dirichlet distribution by computing the
posterior distribution and estimating its p vector.
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zd,w ∼ Multinomial(θd), then

– randomly select from a word from the previously selected topic:

w ∼ Multinomial(ϕzd,w).

In this setup, the topic-word distribution ϕk, document-topic distribution θd, and topic

assignment zd,w are three latent parameters we want to estimate.

Among the three, document-topic distribution θd is of utmost interest because it summa-

rizes the attention allocated to each topic in each news article. To estimate these parameters

using a Bayesian method, Griffiths and Steyvers (2004) specifies that ϕk and θd follow two

Dirichlet distributions (these two are referred to as the “prior” distribution in Bayesian statis-

tic). From these specifications, we can derive the distribution of the topic assignment zd,w

conditioned on observed word frequency (this conditional distribution is referred to as the

“posterior” distribution). We then use Gibbs sampling to simulate this posterior distribution

and estimate the three hidden model parameters.5

Users of the traditional unsupervised LDA developed by Blei, Ng, and Jordan (2003) and

Griffiths and Steyvers (2004) only need to pre-specify the number of topics K and let the

model cluster words into these topics based on word frequencies in a completely unsupervised

manner. Specifically, the LDA model is more likely to assign a word w to a topic k in a

document d if w has been assigned to k across many different documents and k has been used

multiple times in d (Steyvers and Griffiths, 2007). Because the model uses a probabilistic

process to uncover underlying topics, users of LDA have no control over topic assignments.

Since we are interested in uncovering specific topics in this paper, we employ a recent

extension of LDA called Seeded LDA (sLDA) developed by Lu, Ott, Cardie, and Tsou

(2011). sLDA allows users to regulate topic contents using domain knowledge by injecting

seed words (prior knowledge) into the model. Precisely, under sLDA, we specify the topic-

word distribution as follows:

ϕk ∼ Dirichlet (β + Cw)w∈V , (1)

where V is the corpus or text collection, Cw > 0 when w is a seed word in topic k and Cw = 0

when w is not a seed word. Intuitively, sLDA gives preference to seed words w in topic k

in the form of pseudo count Cw and clusters words into topics based on their co-occurrences

5Gibbs sampling is a technique to simulate a high-dimensional distribution by sampling from lower-
dimensional subsets of variables where each subset is conditioned on the value of all others. Please refer to
Griffiths and Steyvers (2004) for details on implementing Gibbs sampling in LDA.
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with the seed words. Notably, when a seed word is absent in a text collection by design, it

does not enter the sLDA model or impact the estimation process.

2.2 Seed Words

The foundational piece of an sLDA model is the set of seed words representing the prior

knowledge of each topic. Watanabe and Zhou (2020) emphasize that a dictionary of seed

words needs to be carefully chosen based on field-specific knowledge independent of word

frequencies in the text collection. ?? lists the lemmatized6 seed words for each narrative.

Our seed words for War include conflict, tension, terrorism, war and seed words for Pan-

demic include epidemic, pandemic. Notably, the seed words need to be general fundamental

concepts that can have reasonably stable meanings over very long periods. Our methodology

allows for the fact that the meanings of other words (such as ”nuclear”) may evolve or may

even be neologisms that do not exist early in the sample.7

The seed words for the non-disaster-focused narratives are manually collected from Shiller

(2019). These words are italicized and discussed extensively in Shiller (2019). We also add

certain words that help define the themes of the narratives. We want to emphasize that we

remove any words that we are only introduced recently, such as bitcoin, machine learning,

or great recession, in selecting the seed words to avoid any look-ahead bias. As shown in

??, we have reclassified the nine narratives from Shiller (2019) into 12 topics to facilitate

our estimation specifically, as Panic and Confidence are opposing notions, we split them

into two topics. Similarly, Frugality versus Conspicuous Consumption is split into Frugality

and Conspicuous Consumption. We further divide Real Estate Booms and Bursts into two

separate topics, namely Real Estates Booms and Real Estates Bursts. In addition to Stock

Market Bubbles, we add Stock Market Crashes. In contrast, because of their similarities, we

combine Labor Saving Machines and Automation and Artificial Intelligence into one topic.

In a semisupervised topic model such as sLDA, the best approach to examine if the

number of topics is reasonable is to investigate the most common terms within a topic post-

estimation to determine whether the topics feature the desired contents (Lu, Ott, Cardie,

and Tsou, 2011; Watanabe and Zhou, 2020). In addition to the 14 topics discussed above, we

6Lemmatization means removing word endings such as s, es, ing, ed, etc.
7In tracking the articles making the most significant contribution to War over the past 30 years, we find

that all of them feature wars, terrorism, and tensions in international relations.
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include one additional “garbage collector” to absorb everything unrelated to these narratives

in the news.8

2.3 Estimation

Figure 1 illustrates the rolling estimation scheme used in the paper. Specifically, at the end of

each month t, we run the sLDA model using all news data over the past 120 months (months

(t − 119) to t). We use ten years of news data in the monthly estimation to balance the

amount of news data required to estimate the model and computational costs. On average,

every ten years of historical data consists of around 460,000 articles, sufficient to reliably

extract the topic weights at the time of estimation.9 Notably, rolling estimation is viable

only under the sLDA model because we can ensure the consistency of thematic contents over

time using seed words.

During each estimation, we draw 200 samples from the posterior distribution of the sLDA

model and use the last draw to estimate the document-topic weights θd; that is, we estimate

a different 14×1 vector θd = [θ1d, θ
2
d, . . . , θ

14
d ] for each news article, d, in the estimation

window.10 We then compute the monthly weights of each topic i (i = 1, 2, . . . , 14) as the

average weight of each topic across all articles in month t, weighted by the length of each

article:11

θit =

∑nt

d=1 θ
i
d × length(d)∑nt

d=1 length(d)
, (2)

where θit is the weight of topic i in month t, nt is the total number of news articles in month t,

and length(d) is the total number of unigrams (one-word terms), bigrams (two-word terms),

8When we use many topics, the weights of seeded topics can be approximated by the frequency of the
seed words in the corpus. We investigate this case by constructing topic weights as the counts of seed words
scaled by the article’s length and present the results in Internet Appendix ??. We report that frequency-
based topic weights still yield results consistent with the sLDA ones, yet their out-of-sample performance is
weaker.

9Estimation is implemented by the seededla package in R and runs on a high-performance computing
(HPC) cluster. Full estimation of the model parallelized on 80 computational nodes requires about one week.
Following standard practice, we set α = 50/K where K is the number of topics, β = 0.1, and Cw = 0.01 for
seed word w.

10In addition to the number of topics and articles, the number of samples drawn from the posterior
distribution is a computational cost consideration in any topic model.

11Equal weighting of topic weights across articles yields similar results.
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and trigrams (three-word terms) in article d.12

Although ten years of news articles are used to estimate the model, the final topic weights

in month t are computed from the news articles of that month only. The final output of the

estimation process is a time series of monthly weights for each of the 14 narratives. These

time series will be used as input into our economic forecasting applications.

Our method takes the evolution of word usage into account. Although the list of seed

words remains unchanged, the model is re-estimated monthly using data for the past ten

years (including the current month), so the actual words clustered in the topics change

monthly. The list of “unobserved” words (from the model’s output) varies monthly based

on language changes.

Notably, topic modeling is more about examining the thematic content as a whole and

less about picking up on each word belonging to the topic. For instance, terms such as state

and government also show up in our War topic and by themselves are not tension-related

words. However, in the context of other words showing up with them in War, these terms

are an integral part of a topic on wars and international tensions. In other words, we cannot

talk about global tensions without mentioning state and government.

3 Data

We leverage the richness of full newspaper texts using all articles since the beginning of the

NYT ’s inception; however, we still remove articles with limited content, such as those that

contain mostly numbers, names, or lists. Then we conduct the standard text processing

steps.13

After the cleaning steps, for each month t, we create a document term matrix containing

all articles over the past ten years up to the current month. Each row of the matrix is

an article, each column is a term, and each entry is the count of that term in the article.

The document-term matrix and topic-based seed words are input into the sLDA model to

estimate monthly topic weights, as described in the previous section.

12An n-gram is a sequence of n-words. For instance, “San Diego” is a bigram, and “A study in narratives
is needed” is a 6-gram.

13Please refer to Internet Appendix A of Hirshleifer, Mai, and Pukthuanthong (2023) for details on our
text cleaning process.
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Panel A of Figure 2 plots the time series of monthly article counts after excluding articles

with limited content. Since 1871, the NYT has published over 6.8 million news articles with

an average monthly of 3,800.14

Panel B of Figure 2 reports the average monthly article length, which is defined as the

total count of unigrams (one-word terms), bigrams (two-word terms), and trigrams (three-

word terms). While Bybee, Kelly, Manela, and Xiu (2021) consider only unigrams and

bigrams in their paper, we extend the analysis to trigrams as a majority of the seed words

have three words, such as real estate boom, stock market bubble, and cost push inflation.

Over 1871–2019, articles come in at an average length of 493 ngrams.

4 Textual Discourse about War Risk

This section examines the evolution of various topics over time, with particular emphasis on

the war index, War. Apart from War, our topics exhibit no clear time trends; we therefore

focus our discussion on the time series of War. Figure 4 shows that War spiked in the 1870s

during the Reconstruction period following the American Civil War and surged again during

the 1890s, marked by the Spanish-American War and Philippine-American War. The War

index reached its highest level since the start of the sample during World War I and remained

low during the 1920s and 1930s before surging again during World War II. It peaked in 1963

with President John F. Kennedy’s assassination.

Hirshleifer, Mai, and Pukthuanthong (2023) find that the predictive power of War for the

aggregate stock market has become more pronounced in recent decades. Consequently, we

focus on the last 30 years of the sample, examining the ten articles with the most significant

contributions to the ten highest monthly scores of War hikes since 1990. Figure 5 shows that

War spiked during the Gulf War in the early 1990s and again after the 9/11 terrorist attacks

in 2001. In recent years, War has remained high, particularly from 2014 to 2018, reflecting

the period’s climate of international tensions, including the nuclear weapons development

and tests by North Korea. A detailed description of the statistics for all extracted topics are

provided in Hirshleifer, Mai, and Pukthuanthong (2023).

14Data are missing for September, and October 1978 (due to strikes) and thus are excluded from Figure 2.
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5 War Discourse and the Cross-Section of Expected

Returns

Hirshleifer, Mai, and Pukthuanthong (2023) document that War is a positive predictor of

the aggregate stock market return. This section tests whether War can be used to predict

the cross section of expected stock returns. Specifically, we test whether loadings on a factor

based on war are positive return predictors.

Such a relationship is implied by models of rare disaster risks (Barro, 2006; Barro, 2009) as

discussed in Gourio (2008). In such a setting, stocks that provide high returns during periods

of high War risk provide a hedge for aggregate consumption and therefore command low risk

premia. Alternatively, at least two behavioral hypotheses offer a similar implication. The

first hypothesis is that investors overweight the risk of war because of its high salience. The

second is that if investors have cumulative prospect theory preferences, there is overweighting

of low probabilities, so rare risks in general (including the risk of war) are overweighted.

Gourio (2008) derives a framework for testing the cross-sectional implications of rare

disaster premia. He defines rare disasters as the states of the economy when the monthly

market returns are below 10% or the annual consumption growth is lower than -2.3%. Gourio

(2008) does not find empirical support for the cross-sectional version of the rare disaster risk

model. However, extant measures of variation in rare disaster risk, such as that used in

Gourio (2008), have limited sample size for the occurrence of rare events. Low small sample

size reduces power to identify the asset pricing consequences of extreme events.15 We use

news data to capture investors’ perceptions of disaster risk, as extracted in our War index.

We test for the ability of our War factor in the cross-section of asset returns using a linear

factor model and the data from July 1972 to December 2016.16 There are both rational factor

pricing and behavioral theories for why loadings on the War factor may positively predict

returns.17 Under rational factor pricing, investors require a risk premium for bearing greater

war risk (beyond the standard CAPM premium for beta), perhaps because of a stochastically

15Gourio (2008) use the returns during 9/11, natural disasters and low consumption. He argues that if
there are large risk premia for rare disasters, industries that did well on 9/11 (e.g., defense, tobacco, gold,
shipping and railroad, coal) should on average and over time have low average returns, and industries that
did poorly (e.g., transportation, aerospace, cars, leisure) should on average have high returns.

16Our sample is constrained by data availability of different risk factors.
17hirshleifer/jiang:07 and Daniel, Hirshleifer, and Sun (2020) discuss why loadings on behavioral factors

in general are proxies for mispricing, and are therefore cross-sectional return predictors.

12



varying investment opportunity set.

Under the behavioral theory, investors overweight war risk, perhaps because rare disasters

are highly salient (resulting in overestimation of their probability) or because investors have

a cumulative prospect theory value function wherein small probabilities are overweighted.

When war risk is overweighted, stocks that are highly negatively sensitive to war risk (i.e., will

do poorly in the event of war) will be undervalued relative to stocks that are less negatively

sensitive (or are positively sensitive). A long-short portfolio that buys the undervalued stocks

and sells the overvalued stocks (i.e., a war factor) will earn a positive return premium. Stocks

with higher (more positive) loadings on the war factor will be more undervalued by investors.

Such stocks are highly sensitive to the war risk that investors are pessimistic about. Such

stocks will therefore earn higher expected returns than stocks with low loadings.

To capture rational factor pricing, we propose an SDF for excess returns that are affine

in the War factor (henceforth, WarFac):

SDFt = 1− b×WarFact. (3)

The no-arbitrage condition for asset i’s return over the riskfree rate is

0 = E
[
Re

i,tSDFt

]
= E

[
Re

i,t

]
E[SDFt] + cov

(
Re

i,t, SDFt

)
= E

[
Re

i,t

] 1

Rf

− b× cov
(
Re

i,t,WarFact
)
, or

E
[
Re

i,t

]
= Rfbvar (WarFact)×

cov
(
Re

i,t,WarFact
)

var (WarFact)
,

E
[
Re

i,t

]
= λWar × βi,War,

(4)

where Re
i,t is the excess return of asset i at time t, βi,War =

cov(Re
i,t,WarFact)

var(WarFact)
denotes the

exposure of asset i to the War factor, and λWar is the cross-sectional price of risk associated

with the War factor. Alternatively, the behavioral interpretation of λ is that it measures the

extent to which assets with higher sensitivity to war risk are undervalued relative to stocks

that have lower war-risk sensitivity.

To estimate βi,War and λWar, we conduct the standard two-pass test (Cochrane, 2005).

First, for each asset i = 1, . . . , N , we estimate the risk exposures from the time-series regres-

sion

Re
i,t = ci + β′

i,fft + ϵi,t, (5)
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where ft presents a vector of risk factors. Then, to estimate the cross-sectional price of

risk or risk premium associated with factors ft, we perform a cross-sectional regression of

time-series average excess returns, E
[
Re

i,t

]
, on risk factor exposures:

E
[
Re

i,t

]
= µR,i = α + β′

i,fλf + ei for i = 1, . . . , N. (6)

We then obtain estimates of the cross-sectional return premium slope λ and the average

cross-sectional pricing error or zero-beta rate, α. Under rational factor pricing, the intercept

(α) is predicted to be economically and statistically insignificant. Under either rational factor

pricing or behavioral pricing theories, the return premium slope (λ) should be statistically

significant, economically substantial, and stable across different cross sections of test assets.

We report the t-statistics computed with the Shanken (1992)’s corrected standard errors.

The variable ei captures the pricing error, which is predicted to be zero under rational factor

pricing. To measure the size of pricing errors, we report the cross-sectional R2(= 1−σ2
e/σ

2
µR
).

Under rational factor pricing, the R2 should be 1, so the estimated R2 measures how well

the model fits the data.

Following He, Kelly, and Manela (2017), we construct ourWar factor, denoted asWarFact,

as the innovation from an AR(1) model of War and test its pricing ability. We estimate the

shock to the War in levels, ut, and convert this to a growth rate by dividing it by the lagged

War :

Wart = ρ0 + ρ×Wart−1 + ut and (7)

WarFact =
ut

Wart−1

. (8)

This is the War factor that we will use in the cross-sectional tests.

We consider a large set of test assets constructed from a wide range of characteristics,18

including:

[1] 138 long-minus-short anomalies from Hou, Xue, and Zhang (2020) (hereafter HXZ),

[2] 1372 single-sorted portfolios from HXZ,

[3] 360 ML-based nonlinear portfolios from Bryzgalova, Pelger, and Zhu (2020),

[4] Our own constructed 128 anomalies based on HXZ,

18Lewellen, Nagel, and Shanken (2010) shows that conventional double-sorted portfolios, exposed to a
few characteristics, often present a low hurdle for asset pricing models due to their strong embedded factor
structure.
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[5] Our own constructed 2190 non-linear portfolios.19

We test whether War is an economy-wide factor that help explains a wide range of anoma-

lies. Thus we include a variety of testing assets, both traditional and complex.20 We start

with test assets based on anomaly characteristics, including the 138 anomalies from HXZ:

momentum, value versus growth, investment, trading frictions, intangibles, and profitability.

Second, to span a large return space, we include all their 1372 single-sorted portfolios avail-

able from 1967 to 2016. Third, we replicate HXZ and construct our anomalies. We use them

as another set of testing assets for a robustness check. Fourth, we build non-linear portfolios

based on three polynomials. See Appendix C.2 for a description of how these anomalies are

constructed. Finally, we include the ML-based nonlinear portfolios from Bryzgalova, Pel-

ger, and Zhu (2020). They argue that their ML-based nonlinear portfolios address critical

problems of conventional sorts, including complex interactions, the curse of dimensionality,

repackaging, and duplication. They argue that the ML-based nonlinear portfolios present

a new way of building better cross-sections of portfolios that can be used in structural and

reduced-form models.

Next, we examine the pricing effectiveness of WarFact as compared with the factors in

several well known factor models such as the Fama-French six-factor model (FF6), Stam-

baugh and Yuan (2017)’s mispricing factor model (M4), Daniel, Hirshleifer, and Sun (2020)’s

composite behavioral and rational factor model (DHS), and Hou, Mo, Xue, and Zhang

(2021)’s q-factor model (Q5). WarFact increases the model fit of each these factor models

by 13%, 11%, 19%, and 7%, respectively. The testing assets that WarFact best prices are

the anomaly characteristics and the ML-based nonlinear portfolios. WarFact as a single

factor prices these assets with a much higher R2 of 42%.

We test the performance of WarFact on various sets of test assets, beginning with the

138 anomaly characteristics from HXZ. , We examine the performance of WarFact on its

own, and then test whether introducing WarFact as an additional factor to the FF6, M4,

DHS, and Q5 factor models provides incremental explanatory power.

Panel A of Table 1 describes the performance of WarFact as a single factor model.

Starting in the first column with WarFact as War factor, the slope of the relation between

19The data and code are available upon request from the authors. We will make them publicly available
once the paper is accepted for publication.

20See Appendix C for the detailed construction and the coverage of our testing assets.
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returns andWar loadings is negative and significant at the 1% level (t = −2.67). Its monthly

return premium is -17.13%. In a rational rare disaster risk setting, the negative sign implies

that assets providing high returns during high War risk periods are good hedges of War

risk, and therefore command a lower risk premium. In a behavioral setting, the negative

sign indicates that such assets are overpriced by investors who overweight war risk.

WarFact has a monthly standard deviation of 13.6%, so its first-stage betas are much

smaller than those produced by traded factors. As a result, the return premium per unit of

loading (its price of risk under rational factor pricing) is much larger than that of the other

traded factors.

WarFact maintains its significance even after the introduction of other factors to the

model. The inclusion of FF6 and M4 factors alongside WarFact does result in a reduction

of 3% in the return premium of War. Additionally, when WarFact was added to the Q5

factors, the return premium decreases by 9%, and it marginally increased by 0.30% when

added to DHS. The introduction of WarFact to the FF6 factor model led to an increase in

the model’s explanatory power (R-squared) by 9%, while its addition to M4, DHS, and Q5

resulted in a respective increase in explanatory power of 5%, 15%, and 2%. When considered

as a solo factor, WarFact possessed an R2 of 42%, while FF6, M4, DHS, and Q5 exhibited

R2 values of 59%, 65%, 51%, and 77%, respectively, demonstrating that WarFact as a solo

factor provides a good model fit.

We next evaluate the performance of WarFact in pricing the 1372 single-sorted portfolios

as test assets, as shown in Panel B of Table 1. The monthly return premium for War is

reduced by more than a half, from -17% to -8%, and the absolute t-statistic diminishes from

2.67 to 2.34. This indicates that WarFact provides better pricing of the anomalies. Further-

more, the inclusion of WarFact in the factor models resulted in an increase of approximately

4% in their explanatory power. However, as a single-factor model, WarFac did not price

these testing assets and anomalies proficiently, as its R2 was only 16% in comparison to

the higher percentages of 42%, 43%, 34%, and 55% provided by FF6, M4, DHS, and Q5,

respectively.

When the test assets are the 360 ML-based nonlinear portfolios, we find that the return

premium for loading on War risk is of -40% per month, as seen in the first column in Panel C

of Table 1. Remarkably, the monthly return premium for loading on War risk increases (in

absolute magnitude) to become -56%, -45%, -47%, and -44% after including FF6, M4, DHS,
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and Q5. Furthermore, including WarFact enhances the explanatory power (R-squared) of

FF6, M4, DHS, and Q5 models by 25%, 18%, 26%, and 9%, respectively. For this set of

testing assets, the explanatory power of the WarFact as a single-factor model is 43%, which

is on par with FF6 and M4 (both at 41%), higher than DHS (38%), and lower than Q5

(58%).

To sum up so far, as with the anomalies test portfolios,WarFact is very effective in pricing

the HXZ test portfolios, the anomalies test portfolios, and the nonlinear test portfolios. It

has strong predictive power both as a solo factor and incremental to the well-known factor

models.

To evaluate the robustness of our findings, we perform additional tests using our con-

structed anomalies and nonlinear portfolios as test assets. Our 104 anomalies are constructed

in a similar vein to those in HXZ. We find that WarFact provides the most additional in-

formation for pricing to DHS, followed by FF6, M4, and Q5. The inclusion of WarFact

increases the explanatory power (R-squared) by 21%, 15%, 25%, and 7% for FF6, M4, DHS,

and Q5, respectively. As a single-factor model, WarFact exhibits an R-squared of 30%,

which is higher than that of FF6 (23%) and DHS (14%), roughly equivalent to M4, but

lower than Q5 (47%).

For our 2190 nonlinear portfolios constructed from the characteristics up to three poly-

nomials (see Appendix for detailed construction), WarFact generates an R-squared of 13%

with a monthly return premium of about 10%. The inclusion of WarFact in FF6, M4, DHS,

and Q5 leads to a similar return premium. However, it contributes around 7% to 9% to the

explanatory power of FF6, M4, and Q5, and 20% to DHS. The results of these additional

test assets are reported in Table A1 in Appendix ??.

In summary, we find that WarFact prices a wide range of test assets, and assets that

pay off during high War risk periods are either underpriced on average or are good hedges,

thereby earning low return premia. We find that WarFact prices anomalies and nonlinear

assets very well, and it contributes to the explanatory power of the benchmark models by

approximately 20% when pricing 360 ML-based nonlinear portfolios and 128 anomalies.

Our findings indicate that War is effective in pricing a wide range of assets, including the

ML-based nonlinear portfolios. The ML-based nonlinear portfolios capture complex inter-

actions among many characteristics and the nonlinear effects of characteristics on returns,

making them more challenging to price than conventional cross-sections. Furthermore, these
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portfolios span the stochastic discount factor (SDF) and generate the highest possible Sharpe

ratio out-of-sample, making them an essential test asset in rational asset pricing.

Interestingly, War exhibits a negative return premium for factor loadings that is most

significant and largest for the ML-based nonlinear portfolios compared to other testing as-

sets, with a magnitude of -33% compared to -17% for anomalies and -8% for single-sorted

portfolios. This result suggests that War can capture nonlinear dependencies among char-

acteristics in predicting returns, making it a powerful tool for asset pricing.

Moreover, the addition of War to the multifactor benchmark models to price the ML-

based nonlinear portfolios substantially reduced the average cross-sectional pricing error or

intercept from prominent factor models, from 3.25% to close to zero percent on average.

This finding suggests that War is a valuable addition to the set of benchmark models for

pricing a diverse range of assets.

6 The War Factor-Mimicking Portfolio

Our previous analysis constructs WarFac as a shock from the first-order autoregressive

process. It is a simple and less computing demanding approach. Nonetheless, it is based on

the assumption the relationship between macroeconomic variables and asset prices is linear,

which may not be true in reality and it does not account for the impact of other factors that

may affect asset prices.

In this section, we form a traded version of the WarFac or the War-factor Mimicking

Portfolio (WMP) by projecting the War factor (WarFact) onto the space of excess returns.

WMP is in the form of a traded return. Compared to the shock, the mimicking portfolios

captures the exposure of assets to macroeconomic factors. The drawback is it requires more

data and computational resources. The construction of the mimicking portfolio may also be

subject to errors due to model misspecification or estimation errors.

We present the results from both the shock and WMP to ensure the results are robust

and to address the inflated price of the risk issue.
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6.1 Construction of WMP

The return premium for War loadings, which we estimate to be around 22% per month

across test assets, is economically substantial. Rational asset pricing theory suggests that

most non-traded factors exhibit an inflated price of risk owing to the presence of noise and

measurement errors that remain uncorrelated with returns. Consequently, such errors tend

to compress the variation in beta estimates (see Pukthuanthong, Roll, Junbo, and Tengfei

(2022) for the measurement errors of non-tradable asset and remedy). In a similar vein,

mispricing factors also tend to compress beta estimates due to measurement error. Adrian,

Etula, and Muir (2014) contend that a non-traded factor is a linear combination of the

factor mimicking portfolios (FMP) and error, where the FMP represents a projection of

the non-traded asset on the return space. To tackle the inflated risk issue of non-traded

factors, they advocate for the construction of FMPs and re-performance of tests. This

construction process, termed the time-series approach presents a practical solution that not

only simplifies the testing process but also provides insights into the potential alpha and

Sharpe ratio generated by the War loadings. Therefore, the time-series approach contributes

significantly to the practical literature on alpha-seeking strategies.

To construct WMP, we project our nontradedWar factor onto the space of excess returns,

WarFact = α + β′ [SL, SM, SH,BL,BM,BH,Mom] + ϵt, (9)

where (SL, SM, SH, BL, BM, BH, Mom) is the vector of excess returns of the six Fama-

French benchmark portfolios on size (Small [S] and Big (B)) and book-to-market (Low(L),

Medium(M), and High(H)) over the riskfree rate and Mom is the momentum factor. We

follow Adrian, Etula, and Muir (2014), who choose these characteristic portfolios for their

ability to span a substantial portion of the return space.21 We then define WMP as the

fitted value,

WMPt = β̂′ [BL,BM,BH, SL, SM, SH,Mom] , (10)

where β̂ = [0.66, 0.27,−0.83,−0.18,−0.49, 0.37,−0.10] is estimated via OLS from 1967 to

2016. Since we use the full period to estimate this regression, this methodology is subject

to look-ahead bias.

21Ideally, the error ϵt is orthogonal to the space of returns so that the covariance of any asset with
WarFact is identical to its covariance with the WMP, defined as the fitted value of the regression.
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6.2 Pricing Results Using the WMP

We investigate the pricing performance of the factor mimicking portfolio WMP using the

same test assets we used in the previous sections to test the performance of WarFact and

report the results in Table 2. We find that in a single-factor model with WMP, the return

premium for loading on war risk is negative across test assets. It is significant at the 1%

level for the 118 anomaly characteristic portfolios and the 360 ML-based nonlinear portfolios,

weakly significant at the 10% level for the 1173 single-sorted portfolios and for our 2,190

own-constructed nonlinear portfolios, and insignificant for our 104 own-constructed anomaly

portfolios. See Section 5 for the layout of the five sets of testing assets we employ in this

study. The monthly return premium for loading on the war risk factor WMP is -0.55% for the

118 anomaly characteristic portfolios, -0.24% for the 1,173 single-sorted portfolios, -0.14%

for our own-constructed 104 anomaly characteristic portfolios, -0.50% for the 360 ML-based

nonlinear portfolios, and -0.30% for our 2.019 own-constructed nonlinear portfolios. Hence,

the return premium for loading on war risk is, on average, 0.35% per month (or 4.2% per

annum) across test assets.

The addition of the War Mimicking Portfolio (WMP) to the benchmark facatr models

enhances their explanatory capacity by 9% to 14% while pricing 2,190 nonlinear portfolios

and 360 machine learning-based nonlinear portfolios, respectively. Importantly, the mispric-

ing error substantially decreases, from 3% to 0.61%. when we supplement WMP with other

benchmarks to price the machine learning-based nonlinear portfolios. These results lead us

to conclude that the WMP pricing of nonlinear portfolios aligns closely with the War Factor

generated from a shock in the first-order autoregressive process.

7 Protocol of Factor Identification

In this section, we investigate the extent to which the War Mimicking Portfolio (WMP)

qualifies as a priced risk factor in accordance with the criteria set forth by Pukthuanthong,

Roll, and Subrahmanyam (2019). They assert that for a factor to be considered a genuine

priced risk factor, it must satisfy three essential conditions. First, a necessary condition is

that it be correlated with the systematic risk of returns or the covariance of returns. Second,

a sufficient condition is that the factor must command a risk premium. Last, the factor
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must yield a reward-to-risk ratio that is reasonable in view of plausible levels of risk aversion

and risk—an augmented condition. A detailed exposition of these criteria can be found in

Appendix B. As reported in Table ?? and Table B2, WMP passes these three conditions,

consistent with it being a priced risk factor.

8 War versus Other Media-Based Uncertainty Indexes

The previous section shows that War innovations command a negative risk premium across

a wide range of test portfolios. However, the literature has introduced news-based disaster

risks, most notably the news implied volatility (NVIX) from Manela and Moreira (2017)

and the geopolitical risks (GPR) from Caldara and Iacoviello (2022).22 Thus, this section

investigates whether ourWar contains information beyond these two measures by performing

horserace analyses in the cross-sections.

We conduct the cross-sectional tests with the innovations in War (henceforth, WarFac),

NVIX2, and geopolitical risks (GPR). We construct these factors using Equation (8). As re-

ported in Table 3, across all three sets of test assets, the economic and statistical magnitudes

of WarFact remain almost unchanged in the presence of NVIX2 and GPR factors, implying

War presents distinct information. Meanwhile, NVIX2 and GPR command positive risk

premia when used alone though their economic and statistical significances vary across the

test assets. When tested against WarFact, the GRP factor is significant only with the 360

ML-based nonlinear portfolios, while the NVIX2 is completely subsumed across three sets of

test assets. For the 360 ML-based nonlinear portfolios, GPR changes the sign to negative as

it is highly correlated with War while War remains negative. The magnitude of its price of

risk is about the same, suggesting the power of War encompasses that of GPR. 23

Overall, we conclude that our War produces the empirical results most consistent with

the predictions of the rare disaster models (Barro, 2006; Gabaix, 2012; Gourio, 2008) and

it contains valuable information not captured by other empirical measures of rare disaster

22We thank the authors of these papers for making their data available.
23We also double-check by using the levels of these variables instead of their innovations. The results for

War remain intact while GPR commands a negative risk premium, yet both GPR and NVIX2 are again
subsumed by War when tested together. We also try with our own constructed portfolios and obtain the
same results, whether using levels or innovations of these variables. These results are not reported to conserve
space but are available upon request.
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risks.

9 War versus Crisis Events: Pricing Industry Returns

We next investigate whether the news-basedWar factor prices industry portfolios. Berkman,

Jacobsen, and Lee (2011) measures empirical disaster risks by counting the number of crisis

events each month.24 They argue that the raw number of crisis events is a good proxy

for investors’ perception of rare disaster risks and show that factors constructed from crisis

event counts price the Fama-French 30 industry portfolios with negative return premiums.

We therefore test whether War has incremental predictive power beyond the real-world crisis

factors.

Following Berkman, Jacobsen, and Lee (2011), we construct all crisis-related factors,

both news-based and event-based, as residuals from AR(1) processes on *******. Then,

every month t, to estimate crisis betas, we run the time series regression of portfolio returns

on the crisis factor and control for market (MKT), size (SMB), and value (HML), as follows:

Re
iτ = αit + βitXτ + βMKT

it MKTτ + βSMB
it SMBτ + βHML

it HMLτ + ϵiτ , (11)

where Re
iτ is the excess return of portfolio i over month t−59 to month t, and X is either our

War factor (WarFac), the crisis event count factor (CrisisFac), or the war event count factor

(CWarFac). To mitigate the effect of outliers on crisis betas, following Berkman, Jacobsen,

and Lee (2011), each month, we cross-sectionally rank crisis betas βit into quintiles and

rescale the ranks so that the variable lies between 0 and 1. Next, to compute the monthly

return premiums, we run the monthly cross-sectional regression of portfolio returns onto its

previous month betas computed in the previous step:

Re
iτ = Interceptt + λtβi,t−1 + λMKT

t βMKT
i,t−1 + λSMB

t βSMB
i,t−1 + λHML

t βHML
i,t−1 + eit, (12)

where the λt’s are the estimates of factor return premiums in month t. Finally, to compute the

unconditional factor return premiums, we take time-series averages of the λt’s and evaluate

statistical significance using Newey and West (1987) standard errors.

In Panel A of Table 4, the test assets are 30 industry portfolios. The sample period is

from July 1926 when the returns data are first available to December 2018, the end of the

24The data is updated to 2018 and available at https://sites.duke.edu/icbdata/.
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crisis event sample. As in Table 9 of Berkman, Jacobsen, and Lee (2011), CrisisFac and

CWarFac have negative monthly return premiums of about -0.3%. Our WarFac also yields

a negative return premium of -0.24%, significant at the 5% level. In the last column, when

we include all three crisis factors along with the Fama-French three factors, both WarFac

and CrisisFac have equal negative return premiums of 0.3%, significant the 5% level, while

the return premium of CWarFac is only -0.21%, significant at the 10% level.

In Panel B, we evaluate a larger number of test assets—49 industry portfolios. For this set

of test assets, when used alone, WarFac and CrisisFac each yield similar return premiums of

-0.25%, significant at the 5% level, while the return premium of CWarFac is not significant.

In the last column, when all three crisis factors are included together with the three Fama-

French factors, Warfac dominates the other two event-based crisis factors.

Overall, we find that a factor based upon our news-based War variable prices industry

portfolios with a negative return premium, and that this effect is strong and incremental to

what is captured by the event-based crisis factors from previous literature.

10 Conclusion

This paper constructs a war factor based on the measure of war media textual discourse

proposed by (Hirshleifer, Mai, and Pukthuanthong, 2023) to evaluate shared predictions

of theories of rare disaster risk and behavioral theories of the mispricing of factors when

investors overweight the risk of rare disasters. We find that loadings on our war factor, War,

strongly predict the cross-section of stock returns, and provide strong incremental predictive

power relative to existing factor models. These findings apply across a broad range of test

assets, including long-short portfolios and machine-learning-based portfolios.

The return premium for loading on War is negative. In a rational asset pricing approach

in which investors dislike rare disasters, this suggests that investors value the hedge provide

by assets which pay off more when the risk of war is greater. In such a setting, the higher

the factor loading, the less risky the stock, implying a lower expected return.

Our findings are consistent with behavioral-based approaches, such as a setting in which-

investors overestimate the probability of war owing to the salience of rare disasters, or over-

weight low probabilities as in the cumulative prospect theory value function. Such over-

weighting of war risk implies undervaluation of stocks that are negatively sensitive to war
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risk and overvaluation of stocks that are positively sensitive. A long-short portfolio that

buys undervalued stocks and sells overvalued stocks (i.e., a war factor) would therefore earn

a positive return premium.

Moreover, our evidence suggests that War is not subsumed by NVIX and GPR, even

when all factors are included in the same regression. This finding is consistent with the

prediction of Gabaix (2012) that equities that provide good returns during high-risk periods

of rare disasters require lower returns to compensate for the risk cross-sectionally.

Overall, our findings support the notion that rare disasters are important for asset pricing,

either because they imply large rational risk premia or because investors tend to overweight

such risks. Our results further imply that the risk of war in particular is a crucial type of

rare disaster for asset pricing.
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Figure 1. Estimation Scheme

This figure plots the rolling estimation scheme for the sLDA model. Every month t, news articles in the
previous 120 months (including month t) are used to estimate the sLDA model, and then articles in month
t are used to compute topic weights in that month.

Timet−121 t−120 t−119
. . .

t−1 t t+1

Use a 120-month rolling window to estimate the topic-word distributions ϕk

Use articles in month t to compute topic weights θd in month t

Figure 2. NYT Article Count and Length

This figure plots the time series of the monthly total count and the monthly average length of articles in
the NYT. Article length is measured as the sum of unigrams (one-word terms), bigrams (two-word terms),
and trigrams (three-word terms) of each article. The sample period is from January 1871 to October 2019.
Articles with limited content have been removed.
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Figure 3. Narrative Contents

This figure plots the frequencies of n-grams related to War over time. Frequencies are constructed according
to the sLDA model described in Section 2, and the size of each n-gram indicates its frequency. The sample
period is from January 1871 to October 2019.
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Figure 4. Time Series of the War Index

This figure plots the time series of the War Risk Index constructed according to the sLDA model described
in Section 2. The solid line represents the topic weight, and the dashed line represents the excess market
return; both have been demeaned to improve visualization. The gray-shaded areas represent NBER-defined
recessions. The sample period is from January 1871 to October 2019.
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Figure 5. Articles Making the Biggest Contribution to War Spikes since 1990

This figure plots the ten articles that have contributed significantly to ten monthly heights of War since
1990. Topic weights are demeaned. The gray-shaded areas represent NBER-defined recessions. The sample
period is from January 1990 to October 2019.
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Table 1

War Factor and Risk Premium

This table presents the results from the second-pass cross-sectional regressions of average portfolio returns

on factor betas. Test assets include 118 long-minus-short portfolios from Hou, Xue, and Zhang (2020) in

Panel A, 1173 single-sorted portfolios from Hou, Xue, and Zhang (2020) in Panel B, and 360 ML-based

nonlinear portfolios from Bryzgalova, Pelger, and Zhu (2020) in Panel C. “WarFac” is the scaled innovations

in NYT War (WarFact); “mkt, smb, hml, rmw, cma, mom” are Fama and French (2018)’s six factors;

“mkt, smb, mgmt, perf” are Stambaugh and Yuan (2017)’s mispricing factors; “pead” and “fin” are Daniel,

Hirshleifer, and Sun, 2020’s behavioral factors; and “r mkt, r me, r ia, r roe, r eg” are Hou, Mo, Xue, and

Zhang (2021)’s Q5 factors. Reported are monthly risk premium and R2 in percentages and t-statistic with

Shanken (1992)’s correction. N is the number of test portfolios and T is the number of months. The sample

is from July 1972 to December 2016.

Panel A: 118 Long-Minus-Short Portfolios from Hou, Xue, and Zhang (2020)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Intercept 0.25 *** 0.16 *** 0.15 *** 0.09 *** 0.10 *** 0.15 *** 0.15 *** 0.12 *** 0.10 ***

(4.14) (7.08) (4.81) (3.23) (3.00) (4.80) (3.80) (3.08) (2.83)
WarFac -17.13 *** -15.64 *** -13.17 *** -17.50 *** -7.93 **

(-2.67) (-4.72) (-4.46) (-3.07) (-2.57)
mkt 0.48 0.89 ** 1.14 *** 0.44 0.74 * 1.07 **

(1.50) (2.51) (2.98) (1.10) (1.77) (2.08)
smb 0.05 -0.02 0.00 -0.05

(0.30) (-0.15) (0.00) (-0.28)
hml 0.27 0.28

(1.60) (1.40)
rmw 0.28 ** 0.24 *

(2.27) (1.66)
cma 0.54 *** 0.50 ***

(4.91) (3.90)
mom 0.61 *** 0.77 ***

(2.91) (3.41)
mgmt 0.71 *** 0.57 ***

(4.50) (3.20)
perf 0.47 * 0.56 **

(1.93) (2.03)
pead 0.36 ** 0.55 ***

(2.19) (2.58)
fin 0.96 *** 0.82 ***

(4.64) (3.47)
r mkt 0.66 * 0.60

(1.87) (1.63)
r me 0.25 0.28

(1.48) (1.62)
r ia 0.44 *** 0.40 ***

(3.66) (3.24)
r roe 0.33 ** 0.35 **

(2.40) (2.46)
r eg 0.80 *** 0.70 ***

(6.05) (4.66)
R2 42 59 65 51 77 68 70 66 79
N 138 138 138 138 138 138 138 138 138
T 532 532 532 532 532 532 532 532 532

34



Table 1

War Factor and Risk Premium (Cont.)

Panel B: 1173 Single-Sorted Portfolios from Hou, Xue, and Zhang (2020)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept 0.71 *** 0.43 ** 0.25 -0.22 0.35 0.42 * 0.21 -0.29 0.32

(3.38) (2.12) (1.11) (-0.81) (1.55) (1.90) (0.88) (-0.96) (1.37)

WarFac -8.08 ** -5.41 *** -5.43 *** -7.13 *** -4.35 ***

(-2.34) (-4.56) (-4.31) (-3.73) (-3.65)

mkt 0.16 0.34 0.84 ** 0.18 0.38 0.92 **

(0.55) (1.08) (2.47) (0.59) (1.17) (2.47)

smb 0.16 0.20 0.13 0.15

(1.08) (1.31) (0.88) (1.00)

hml 0.30 ** 0.31 **

(1.98) (1.97)

rmw 0.18 0.20 *

(1.56) (1.67)

cma 0.20 ** 0.22 **

(2.06) (2.21)

mom 0.58 *** 0.62 ***

(2.84) (3.05)

mgmt 0.46 *** 0.44 ***

(2.89) (2.71)

perf 0.47 ** 0.50 **

(2.12) (2.23)

pead 0.32 ** 0.40 **

(2.13) (2.53)

fin 0.57 *** 0.60 ***

(2.84) (2.90)

r mkt 0.24 0.27

(0.77) (0.87)

r me 0.34 ** 0.34 **

(2.29) (2.27)

r ia 0.27 ** 0.27 **

(2.43) (2.37)

r roe 0.23 * 0.25 *

(1.76) (1.92)

r eg 0.61 *** 0.58 ***

(5.65) (5.29)

R2 16 42 43 34 55 46 47 41 57

N 1372 1372 1372 1372 1372 1372 1372 1372 1372

T 532 532 532 532 532 532 532 532 532
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Table 1

War Factor and Risk Premium (Cont.)

Panel C: 360 ML-based Portfolios from Bryzgalova, Pelger, and Zhu (2020)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept 0.32 3.39 *** 3.28 *** 4.22 *** 2.11 *** -0.25 0.47 -0.41 0.07

(0.43) (6.80) (7.51) (6.07) (2.73) (-0.23) (0.55) (-0.40) (0.07)

WarFac -33.29 *** -55.48 *** -44.59 *** -46.74 *** -44.22 ***

(-2.67) (-3.31) (-3.47) (-3.39) (-3.39)

mkt -3.39 *** -3.24 *** -3.86 *** 0.62 -0.08 0.77

(-6.06) (-6.40) (-5.47) (0.55) (-0.10) (0.75)

smb 0.18 0.12 -0.71 ** -0.87 ***

(1.04) (0.64) (-2.38) (-3.21)

hml 1.31 *** 0.83 *

(6.24) (1.83)

rmw 0.20 1.24 **

(0.95) (2.53)

cma 0.28 * 0.01

(1.81) (0.03)

mom 0.21 1.45 ***

(0.86) (3.45)

mgmt 1.32 *** 1.05 ***

(7.13) (2.65)

perf 0.03 0.86

(0.11) (1.47)

pead -0.56 ** 0.66

(-2.09) (1.19)

fin 0.83 ** 2.17 ***

(2.54) (3.81)

r mkt -1.76 ** 0.43

(-2.17) (0.45)

r me -0.15 -0.20

(-0.66) (-0.69)

r ia 0.24 0.30

(0.93) (0.86)

r roe -0.17 0.91 **

(-0.41) (2.19)

r eg 3.39 *** 1.88 **

(5.95) (2.55)

R2 43 41 40 35 58 66 58 61 67

N 360 360 360 360 360 360 360 360 360

T 532 532 532 532 532 532 532 532 532
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Table 2

War Mimicking Portfolio and Risk Premium

This table presents the results from the second-pass cross-sectional regressions of average portfolio returns

on factor betas. Test assets include 118 long-minus-short portfolios from Hou, Xue, and Zhang (2020) in

Panel A, 1173 single-sorted portfolios from Hou, Xue, and Zhang (2020) in Panel B, 360 ML-based nonlinear

portfolios from Bryzgalova, Pelger, and Zhu (2020) in Panel C, 104 own constructed anomalies in Panel

D, and 1173 own constructed nonlinear portfolios in Panel E. ”WMP” is the War mimicking portfolio;

“mkt, smb, hml, rmw, cma, mom” are Fama and French (2018)’s six factors; “mkt, smb, mgmt, perf” are

Stambaugh and Yuan (2017)’s mispricing factors; “pead” and “fin” are Daniel, Hirshleifer, and Sun, 2020’s

behavioral factors; and “r mkt, r me, r ia, r roe, r eg” are Hou, Mo, Xue, and Zhang (2021)’s Q5 factors.

Reported are monthly risk premium and R2 in percentages and t-statistic with Shanken (1992)’s correction.

N is the number of test portfolios and T is the number of months. The sample is from July 1972 to December

2016.

Panel A: 118 Long-Minus-Short Portfolios from Hou, Xue, and Zhang (2020)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Intercept 0.19 *** 0.16 *** 0.15 *** 0.09 *** 0.10 *** 0.18 *** 0.14 *** 0.09 *** 0.09 ***

(4.95) (7.08) (4.81) (3.23) (3.00) (8.35) (5.27) (3.31) (3.19)
WMP -0.51 *** -0.77 *** -0.60 *** -0.79 *** -0.51 ***

(-3.49) (-3.71) (-3.44) (-3.80) (-2.60)
mkt 0.48 0.89 ** 1.14 *** 0.51 0.91 ** 1.22 ***

(1.50) (2.51) (2.98) (1.56) (2.57) (3.13)
smb 0.05 -0.02 0.10 -0.02

(0.30) (-0.15) (0.58) (-0.11)
hml 0.27 0.26

(1.60) (1.50)
rmw 0.28 ** 0.22 *

(2.27) (1.79)
cma 0.54 *** 0.56 ***

(4.91) (5.04)
mom 0.61 *** 0.55 ***

(2.91) (2.64)
mgmt 0.71 *** 0.66 ***

(4.50) (4.32)
perf 0.47 * 0.45 *

(1.93) (1.85)
pead 0.36 ** 0.32 **

(2.19) (2.02)
fin 0.96 *** 0.89 ***

(4.64) (4.08)
r mkt 0.66 * 0.71 *

(1.87) (1.91)
r me 0.25 0.25

(1.48) (1.41)
r ia 0.44 *** 0.41 ***

(3.66) (3.73)
r roe 0.33 ** 0.32 **

(2.40) (2.28)
r eg 0.80 *** 0.79 ***

(6.05) (5.98)
R2 38 59 65 51 77 61 65 51 77
N 138 138 138 138 138 138 138 138 138
T 532 532 532 532 532 532 532 532 532
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Table 2

War Mimicking Portfolio and Risk Premium (Cont.)

Panel B: 1173 Single-Sorted Portfolios from Hou, Xue, and Zhang (2020)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept 0.66 *** 0.43 ** 0.25 -0.22 0.35 0.43 ** 0.27 -0.22 0.26

(3.57) (2.12) (1.11) (-0.81) (1.55) (2.06) (1.19) (-0.84) (1.10)

WMP -0.28 * -0.34 ** -0.41 *** -0.43 *** -0.41 ***

(-1.87) (-2.49) (-2.59) (-2.95) (-2.64)

mkt 0.16 0.34 0.84 ** 0.17 0.32 0.85 **

(0.55) (1.08) (2.47) (0.58) (1.02) (2.50)

smb 0.16 0.20 0.16 0.21

(1.08) (1.31) (1.14) (1.36)

hml 0.30 ** 0.31 **

(1.98) (2.01)

rmw 0.18 0.18

(1.56) (1.50)

cma 0.20 ** 0.20 **

(2.06) (2.10)

mom 0.58 *** 0.57 ***

(2.84) (2.81)

mgmt 0.46 *** 0.36 **

(2.89) (2.51)

perf 0.47 ** 0.43 *

(2.12) (1.91)

pead 0.32 ** 0.32 **

(2.13) (2.20)

fin 0.57 *** 0.56 ***

(2.84) (2.75)

r mkt 0.24 0.33

(0.77) (1.05)

r me 0.34 ** 0.31 **

(2.29) (2.11)

r ia 0.27 ** 0.20 *

(2.43) (1.91)

r roe 0.23 * 0.20

(1.76) (1.48)

r eg 0.61 *** 0.60 ***

(5.65) (5.48)

R2 19 42 43 34 55 42 45 34 57

N 1372 1372 1372 1372 1372 1372 1372 1372 1372

T 532 532 532 532 532 532 532 532 532
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Table 2

War Mimicking Portfolio and Risk Premium (Cont.)

Panel C: 360 ML-Based Portfolios from Bryzgalova, Pelger, and Zhu (2020)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept 0.84 *** 3.39 *** 3.28 *** 4.22 *** 2.11 *** 0.16 0.76 2.92 *** 0.78

(4.26) (6.80) (7.51) (6.07) (2.73) (0.26) (1.28) (4.29) (0.99)

WMP -0.65 *** -2.94 *** -2.19 *** -1.29 *** -1.73 ***

(-3.27) (-6.97) (-6.95) (-5.23) (-4.03)

mkt -3.39 *** -3.24 *** -3.86 *** 0.22 -0.69 -2.47 ***

(-6.06) (-6.40) (-5.47) (0.35) (-1.06) (-3.66)

smb 0.18 0.12 -0.01 0.08

(1.04) (0.64) (-0.04) (0.35)

hml 1.31 *** -0.03

(6.24) (-0.11)

rmw 0.20 0.57 *

(0.95) (1.89)

cma 0.28 * -0.23

(1.81) (-0.92)

mom 0.21 0.94 ***

(0.86) (3.43)

mgmt 1.32 *** -0.74 **

(7.13) (-2.45)

perf 0.03 0.30

(0.11) (0.78)

pead -0.56 ** -0.61 *

(-2.09) (-1.84)

fin 0.83 ** -0.14

(2.54) (-0.28)

r mkt -1.76 ** -0.41

(-2.17) (-0.49)

r me -0.15 -0.18

(-0.66) (-0.74)

r ia 0.24 -0.94 ***

(0.93) (-2.62)

r roe -0.17 0.05

(-0.41) (0.13)

r eg 3.39 *** 2.71 ***

(5.95) (4.56)

R2 13 41 40 35 58 63 57 42 70

N 360 360 360 360 360 360 360 360 360

T 532 532 532 532 532 532 532 532 532
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Table 3

Cross-Sectional Tests: War versus NVIX2 and GPR

This table presents the results from the second-pass cross-sectional regressions of average portfolio returns on

factor betas. Test assets include 118 long-minus-short portfolio from Hou, Xue, and Zhang (2020) in Panel

A, 1173 single-sorted portfolios from Hou, Xue, and Zhang (2020) in Panel B, and 360 ML-based nonlinear

portfolios from Bryzgalova, Pelger, and Zhu (2020) in Panel C. WarFac is the scaled innovations in NYT

War. NVIX2Fac is the scaled innovations in NVIX2 from Manela and Moreira (2017); and GPRFac is the

scaled innovations in geopolitical risk (GPR) from Caldara and Iacoviello (2022). Monthly risk premium

and R2 in percentages and t-statistic with Shanken (1992)’s correction. N is the number of test portfolios,

and T is the number of months. The sample is from January 1967 to March 2016.

Panel A: 118 Long-Minus-Short Portfolios from Hou, Xue, and Zhang (2020)

(1) (2) (3) (4)

Intercept 0.25 *** 0.19 *** 0.17 *** 0.18 ***

(4.69) (5.21) (5.52) (3.86)

WarFac -15.03 *** -12.25 **

(-2.88) (-1.99)

NVIX2Fac 11.53 ** 1.70

(2.57) (0.25)

GPRFac 13.45 * 9.88

(1.67) (1.01)

R2 36 17 4 54

N 118 118 118 118

T 588 588 588 588

Panel B: 1173 Single-Sorted Portfolios from Hou, Xue, and Zhang (2020)

(1) (2) (3) (4)

Intercept 0.66 *** 0.84 *** 0.65 *** 0.80 ***

(3.40) (4.76) (3.62) (3.95)

WarFac -6.85 ** -6.52 **

(-2.17) (-2.42)

NVIX2Fac 4.59 0.22

(1.15) (0.05)

GPRFac 4.73 2.13

(1.33) (0.61)

R2 12 6 1 19

N 1173 1173 1173 1173

T 588 588 588 588
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Table 3

Cross-Sectional Tests: War versus NVIX2 and GPR (Cont.)

Panel C: 360 ML-Based Portfolios from Bryzgalova, Pelger, and Zhu (2020)

(1) (2) (3) (4)

Intercept 0.41 2.31 *** 0.59 *** 1.54 *

(0.47) (7.92) (2.84) (1.82)

WarFac -40.51 *** -40.89 ***

(-2.98) (-2.67)

NVIX2Fac 27.14 *** 20.24

(3.77) (0.91)

GPRFac 17.37 -62.11 **

(1.08) (-2.08)

R2 51 21 0 59

N 360 360 360 360

T 588 588 588 588
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Table 4

Cross-Sectional Tests: War versus Crisis Events

Every month, we run the following cross-sectional regression:

Re
iτ = Interceptt + λtβit−1 + λMKT

t βMKT
it−1 + λSMB

t βSMB
it−1 + λHML

t βHML
it−1 + eit,

where Re
it is the excess return portfolio i in month t, βt−1 is the vector of asset betas computed over a

60-month window with respect to a our war factor (WarFac), a crisis count factor (CrisisFac) and a war

count factor (CWarFac) studied in Berkman, Jacobsen, and Lee, 2011, the market factor (MKT), value

factor (HML), and size factor (SMB). λt is the vector of estimated risk premia in month t. Reported are

the time series averages of λt with t-statistics computed using Newey-West. The last row reports the time

series average of the cross-sectional R2s. Both risk premia and R2s are in percentage points. Panel A (B)

reports the results for the Fama-French 30 (49) industry portfolios. The sample period is from July 1926 to

December 2018.

Panel A: 30 Industry Portfolios

(1) (2) (3) (4)

Intercept 0.85 *** 0.85 *** 0.74 *** 0.81 ***

(4.77) (4.95) (4.20) (4.46)

WarFac -0.24 ** -0.30 **

(-2.00) (-2.32)

CrisisFac -0.37 *** -0.30 **

(-3.20) (-2.30)

CWarFac -0.26 ** -0.21 *

(-2.31) (-1.79)

MKT -0.12 -0.11 0.13 0.06

(-0.63) (-0.58) (0.59) (0.27)

SMB 0.14 0.09 0.08 0.13

(1.29) (0.83) (0.72) (1.12)

HML 0.16 0.17 0.14 0.16

(1.35) (1.38) (1.11) (1.26)

R2 21 20 19 22

42



Table 4

Cross-Sectional Tests: War versus Crisis Events (Cont.)

Panel B: 49 Industry Portfolios

(1) (2) (3) (4)

Intercept 0.68 *** 0.71 *** 0.73 *** 0.68 ***

(4.20) (4.44) (4.63) (4.40)

WarFac -0.25 ** -0.35 ***

(-2.19) (-2.94)

CrisisFac -0.24 ** -0.20 *

(-2.48) (-1.75)

CWarFac -0.09 -0.15

(-0.80) (-1.27)

MKT 0.06 0.04 0.14 0.17

(0.32) (0.22) (0.73) (0.91)

SMB 0.11 0.09 0.10 0.12

(1.17) (0.97) (0.92) (1.13)

HML 0.23 ** 0.21 ** 0.22 ** 0.26 **

(2.11) (1.97) (2.02) (2.26)

R2 17 17 16 19
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Table 5

Spanning Test

(1) (2) (3) (4) (5)

Alpha -0.241 *** -0.186 ** -0.295 *** -0.242 *** -0.258 ***

(-3.354) (-2.387) (-3.786) (-3.012) (-3.514)

MKT -0.053 ** -0.057 ** -0.025 -0.108

(-2.476) (-2.242) (-1.142) (-0.044)

SMB -0.024 -0.090 * -0.059

(-0.723) (-1.887) (-0.610)

HML 0.071 * -0.079

(1.654) (-1.310)

RMW 0.260 *** 0.195 ***

(5.771) (2.663)

CMA 0.013 0.069

(0.177) (0.494)

MOM 0.017 0.056

(0.529) (1.404)

MGMT 0.101 ** -0.033

(2.496) (-0.414)

PERF 0.015 -0.173 ***

(0.465) (-3.126)

PEAD -0.001 0.031

(-0.012) (0.504)

FIN 0.190 *** 0.169 ***

(6.101) (2.867)

R MKT -0.066 *** 0.049

(-2.828) (0.020)

R ME -0.036 0.085

(-0.858) (0.850)

R IA 0.149 *** -0.075

(2.644) (-0.617)

R ROE 0.208 *** 0.146 *

(4.134) (1.957)

R EG -0.050 -0.046

(-0.884) (-0.740)

$Rˆ2$ 0.208 0.121 0.196 0.170 0.269
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A Additional Results with Our Own Test Portfolios

This subsection presents the additional results with our own constructed portfolios in Ta-

ble A1 and Table A3. We discuss the pricing implications in the main text.

2



Table A1

War Factor and Risk Premium

This table presents the results from the second-pass cross-sectional regressions of average portfolio returns

on factor betas. Test assets include 104 own constructed anomalies in Panel A and 1173 own constructed

nonlinear portfolios in Panel B. “WarFac” is the scaled innovations in NYT War ; “mkt, smb, hml, rmw,

cma, mom” are Fama and French (2018)’s six factors; “mkt, smb, mgmt, perf” are Stambaugh and Yuan

(2017)’s mispricing factors; “pead” and “fin” are Daniel, Hirshleifer, and Sun (2020)’s behavioral factors;

and “r mkt, r me, r ia, r roe, r eg” are Hou, Mo, Xue, and Zhang (2021)’s Q5 factors. Reported are monthly

risk premium and R2 in percentages and t-statistic with Shanken (1992)’s correction. N is the number of

test portfolios and T is the number of months. The sample is from July 1972 to December 2016.

Panel A: 104 Own Constructed Anomalies

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Intercept -0.29 *** -0.37 *** -0.35 *** -0.41 *** -0.36 *** -0.37 *** -0.33 *** -0.32 *** -0.35 ***

(-5.25) (-16.54) (-13.05) (-12.78) (-10.62) (-8.48) (-7.03) (-6.11) (-8.33)
WarFac -20.17 *** -24.67 *** -20.68 *** -22.83 *** -16.85 ***

(-3.00) (-4.91) (-4.53) (-3.73) (-4.24)
mkt 0.09 0.41 0.82 ** -0.13 -0.04 0.26

(0.33) (1.48) (2.51) (-0.32) (-0.10) (0.57)
smb 0.24 0.34 ** 0.18 0.16

(1.57) (2.00) (0.89) (0.78)
hml 0.33 ** 0.44 **

(2.16) (2.14)
rmw 0.09 0.21

(0.74) (1.30)
cma 0.26 *** 0.26 *

(2.62) (1.87)
mom 0.74 *** 0.86 ***

(3.50) (3.20)
mgmt 0.50 *** 0.43 **

(3.26) (2.18)
perf 0.63 *** 0.67 **

(2.86) (2.29)
pead 0.47 *** 0.55 **

(2.91) (2.08)
fin 0.42 ** 0.54 **

(2.08) (2.09)
r mkt 0.50 0.17

(1.59) (0.47)
r me 0.51 *** 0.56 **

(2.59) (2.46)
r ia 0.33 *** 0.29 **

(2.70) (2.10)
r roe 0.15 0.23

(0.97) (1.40)
r eg 1.26 *** 0.90 ***

(7.43) (4.80)
R2 30 23 30 14 47 44 45 39 54
N 128 128 128 128 128 128 128 128 128
T 532 532 532 532 532 532 532 532 532
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Table A1

War Factor and Risk Premium (Cont.)

Panel B: 2190 Own Constructed Nonlinear Portfolios

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept 0.97 *** 0.96 *** 1.03 *** 1.37 *** 1.02 *** 0.76 *** 0.88 *** 0.74 *** 0.83 ***

(3.17) (4.72) (5.07) (5.28) (4.71) (3.23) (3.64) (2.61) (3.17)

WarFac -9.72 *** -11.01 *** -10.55 *** -13.85 *** -11.72 ***

(-2.99) (-5.98) (-4.74) (-4.40) (-6.33)

mkt -0.29 -0.32 -0.29 0.00 -0.01 0.31

(-0.96) (-1.04) (-0.94) (0.01) (-0.02) (0.90)

smb 0.32 * 0.32 0.10 -0.01

(1.84) (1.61) (0.55) (-0.04)

hml 0.15 0.15

(0.91) (0.85)

rmw 0.23 0.42 **

(1.46) (2.52)

cma 0.57 *** 0.50 ***

(4.98) (3.97)

mom 0.53 ** 0.76 ***

(2.33) (3.29)

mgmt 0.48 *** 0.51 ***

(2.90) (2.78)

perf 0.58 ** 0.80 ***

(2.36) (2.93)

pead 0.29 * 0.56 **

(1.70) (2.51)

fin 0.38 0.82 ***

(1.52) (3.01)

r mkt -0.26 0.04

(-0.87) (0.11)

r me 0.29 * 0.17

(1.72) (0.92)

r ia 0.33 ** 0.32 **

(2.51) (2.08)

r roe 0.24 0.51 **

(1.27) (2.53)

r eg 0.88 *** 0.92 ***

(4.48) (3.83)

R2 13 48 46 30 48 55 54 49 56

N 2190 2190 2190 2190 2190 2190 2190 2190 2190

T 532 532 532 532 532 532 532 532 532
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Table A3

War Mimicking Portfolio and Risk Premium

This table presents the results from the second-pass cross-sectional regressions of average portfolio returns

on factor betas. Test assets include 104 own constructed anomalies in Panel A and 1173 own constructed

nonlinear portfolios in Panel B. ”WMP” is the War mimicking portfolio; “mkt, smb, hml, rmw, cma,

mom” are Fama and French (2018)’s six factors; “mkt, smb, mgmt, perf” are Stambaugh and Yuan (2017)’s

mispricing factors; “pead” and “fin” are Daniel, Hirshleifer, and Sun (2020)’s behavioral factors; and “r mkt,

r me, r ia, r roe, r eg” are Hou, Mo, Xue, and Zhang (2021)’s Q5 factors. Reported are monthly risk premium

and R2 in percentages and t-statistic with Shanken (1992)’s correction. N is the number of test portfolios

and T is the number of months. The sample is from July 1972 to December 2016.

Panel A: 104 Own Constructed Anomalies

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Intercept -0.37 *** -0.37 *** -0.35 *** -0.41 *** -0.36 *** -0.36 *** -0.36 *** -0.41 *** -0.38 ***

(-10.65) (-16.54) (-13.05) (-12.78) (-10.62) (-14.09) (-14.66) (-12.86) (-12.62)
WMP -0.20 -1.04 *** -0.34 ** -0.53 *** -0.48 **

(-1.35) (-6.07) (-2.09) (-3.57) (-2.30)
mkt 0.09 0.41 0.82 ** 0.45 0.45 0.89 ***

(0.33) (1.48) (2.51) (1.56) (1.63) (2.72)
smb 0.24 0.34 ** 0.26 * 0.35 **

(1.57) (2.00) (1.66) (2.09)
hml 0.33 ** 0.32 **

(2.16) (2.00)
rmw 0.09 0.04

(0.74) (0.29)
cma 0.26 *** 0.25 **

(2.62) (2.38)
mom 0.74 *** 0.86 ***

(3.50) (3.94)
mgmt 0.50 *** 0.45 ***

(3.26) (3.11)
perf 0.63 *** 0.62 ***

(2.86) (2.78)
pead 0.47 *** 0.42 ***

(2.91) (2.60)
fin 0.42 ** 0.31

(2.08) (1.46)
r mkt 0.50 0.68 **

(1.59) (2.10)
r me 0.51 *** 0.51 ***

(2.59) (2.60)
r ia 0.33 *** 0.23 **

(2.70) (2.09)
r roe 0.15 0.13

(0.97) (0.84)
r eg 1.26 *** 1.22 ***

(7.43) (6.66)
R2 6 23 30 14 47 27 30 14 47
N 128 128 128 128 128 128 128 128 128
T 532 532 532 532 532 532 532 532 532
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Table A3

War Mimicking Portfolio and Risk Premium (Cont.)

Panel B: 2190 Own Constructed Nonlinear Portfolios

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept 1.11 *** 0.96 *** 1.03 *** 1.37 *** 1.02 *** 0.27 0.39 ** 0.88 *** 0.48 **

(5.52) (4.72) (5.07) (5.28) (4.71) (1.29) (2.19) (3.58) (2.42)

WMP -0.35 ** -1.29 *** -0.87 *** -0.94 *** -0.78 ***

(-1.96) (-7.37) (-4.88) (-6.12) (-4.11)

mkt -0.29 -0.32 -0.29 0.51 * 0.19 0.33

(-0.96) (-1.04) (-0.94) (1.71) (0.64) (1.13)

smb 0.32 * 0.32 0.27 0.38 *

(1.84) (1.61) (1.40) (1.77)

hml 0.15 -0.06

(0.91) (-0.29)

rmw 0.23 0.33 *

(1.46) (1.94)

cma 0.57 *** 0.49 ***

(4.98) (3.85)

mom 0.53 ** 0.71 ***

(2.33) (3.02)

mgmt 0.48 *** 0.17

(2.90) (0.92)

perf 0.58 ** 0.44 *

(2.36) (1.66)

pead 0.29 * 0.19

(1.70) (0.98)

fin 0.38 0.14

(1.52) (0.46)

r mkt -0.26 0.25

(-0.87) (0.84)

r me 0.29 * 0.26

(1.72) (1.51)

r ia 0.33 ** 0.09

(2.51) (0.68)

r roe 0.24 0.15

(1.27) (0.75)

r eg 0.88 *** 0.79 ***

(4.48) (3.68)

R2 30 48 46 30 48 60 54 38 53

N 2190 2190 2190 2190 2190 2190 2190 2190 2190

T 532 532 532 532 532 532 532 532 532
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B Protocol for Factor Identification

B.1 First criterion: Correlation of FMPs with the Systematic

Risk of Returns

If the FMP of an observed factor represents a risk factor, it should be related to the systematic

risk of returns. Following Pukthuanthong, Roll, and Subrahmanyam (2019), we test whether

the FMP is related to the cross-sectional covariance of asset returns. Specifically, we apply

the asymptotic approach of Connor and Korajczyk (1988) (CK) to extract ten principal

components from the equities return series. The principal components of the covariance

matrix of returns represent the systematic part of the asset returns. We then compute

canonical correlations between the ten CK principal components and the factor candidates

and test the significance of these canonical correlations.

The implementation of the PRS approach comprises three steps. First, we collect a set

of N equities for the factor candidates. The test assets should be from different industries

with enough heterogeneity to detect the underlying risk premium associated with factors.

Second, we apply the CK approach to extract L principal components (PCs) from the return

series. With T time-series units up to time t, we compute the T × T matrix Ωt =
1
T
RR′,

where R is the return vector. CK demonstrate that for large N , analyzing the eigenvectors

of Ωt is asymptotically equivalent to factor analysis. The first L eigenvectors of Ωt form the

factor estimates. The cutoff point for L < N is chosen so that the PCs explain at least 90%

of the cumulative variance. Third, we collect a set of K factor candidates. In our study,

we include 14 factors, including WMP, five factors from FF6, three factors from M4, four

factors from Q5, and one market factor.

Finally, from the second step above, we compute the canonical correlation between the

factor candidates and the corresponding eigenvectors. First, we use the L eigenvectors from

step 2 and the K factor candidates from step 3 and calculate the covariance matrix over

a sample period t, Vt (L + K × L + K). We break out a submatrix from the covariance

matrix Vt in each period, the cross-covariance matrix, denoted by Ct having K rows and L

columns. The entry in the ith row and jth column is the covariance between factor candidate

i and eigenvector j. We need to break out the covariance submatrix of the factor candidates,

Vf,t (K ×K), and the covariance submatrix of the real eigenvectors, Ve,t (L× L). We then
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can find two weighting column vectors, λt and κt on the factor candidates and eigenvectors,

respectively (λt has K rows, κt has L rows), that maximizes the correlation between the two

weighted vectors. The covariance between the weighted averages of factor candidates and

eigenvectors is λ′
tCtκt, and their correlation is

ρ =
λ′
tCtκt√

λ′
tVf,tλtκ′

tVe,tκt

(13)

We maximize the correlation across all choices of λt and κt. The maximum exists when

the weight is λt = V
−1/2
f,t ht, where ht is the eigenvector corresponding to the maximum

eigenvalue in the matrix V
−1/2
f,t CtV

−1
e,t C

′
tV

−1/2
f,t . κt is proportional to ht.

We maximize the correlation again, subject to the constraint that the new vectors are

orthogonal to the old ones, and so on. As a result, there are min(L,K) pairs of orthogo-

nal canonical variables sorted from the highest correlation to the smallest. We transform

each correlation into a variable asymptotically distributed as Chi-Square under the null hy-

pothesis that the actual correlation is zero. This provides a method of testing whether the

factor candidates are conditionally related (on date t) to the covariance matrix of returns.

Also, by examining the relative sizes of the weightings in λt, we can understand which factor

candidates are more related to real return covariances. The intuition behind the canoni-

cal correlation approach is that the proper underlying drivers of returns are undoubtedly

changes in perceptions about macroeconomic variables. But the factor candidates and the

eigenvectors need not be isomorphic to a particular macro variable. Instead, each candidate

or eigenvector is some linear combination of all the pertinent macro variables. This is the

well-known “rotation” problem in principal components or factor analysis. The PRS criteria

assert that some linear combinations of the factor candidates are strongly related to different

linear combinations of the eigenvectors that represent the actual factors. Canonical correla-

tion is intended for this application. Any factor candidate that does not display a significant

(canonical) correlation with its associated best linear combination of eigenvectors can be

rejected as a viable factor. It is not significantly associated with the covariance matrix of

asset returns.

We compute asymptotic PCs that represent the covariance matrix. We split the overall

sample into five subsamples with ten years.1 For each subsample, we use CK to extract PCs

and retain the first ten PCs, which account for close to 90% of the cumulative eigenvalues

1These five subsamples are 1967-1976, 1977-1986, 1987-1996, 1997-2006, and 2007-2016.
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or the total volatility in the covariance matrix, implying they capture most of the stock

variations.

Next, we proceed to estimate the canonical correlations. We have several factor candidates

and, thus, several pairs of canonical variates. We take the following steps to derive the

significance levels of each factor candidate reported in the first row of Table ??. First, for

each of the ten canonical pairs, the eigenvector weights for the ten CK PCs are taken, and

the weighted average CK PC or the canonical variate for the ten CK PCs that produced the

canonical correlation for this particular pair is constructed.2 Then a regression using each

CK PC canonical variate as the dependent variable and the actual candidate factor values as

independent variables are run over the sample months in each subperiod. The square root of

the R-squared from the regression is the canonical correlation. After proper normalization,

the coefficients for the regressions are equal to the eigenvector’s weighting elements for the

candidate factors. The t-statistic from the regression then gives the significance level of each

candidate factor. With the ten pairs of canonical variates in each subperiod, and a canonical

correlation for each one, we have 50 such regressions. The first row presents the mean t-

statistic of all canonical correlations. The second row shows the mean t-statistic across cases

when the canonical correlation is statistically significant. The last row shows the average

number of significant canonical correlations across subperiods.

A risk factor must satisfy the necessary and sufficient conditions: (1) the FMP is signifi-

cantly related to any canonical variate in all decades, or it has a mean t-statistic exceeding

the one-tailed 2.5% cutoff based on the Chi-squared value, and (2), in each sub-period, the

risk factor has an average number of significant canonical correlations exceeding 2.50 (the

bottom row of each panel). Researchers should test the augmented condition (the third con-

dition) to ensure the robustness of the result. We leave it for other researchers to implement

it. 3 We examine this criterion for the WMP.

Notably, as reported in Table ??, WMP passes this criterion in all test assets, with a

2There are min(L,K) possible pairs. In our application, L = 10 and K = 14.
3Pukthuanthong, Roll, and Subrahmanyam (2019) require an average number of significant decade t-

statistics exceeding 2.5 from 10 canonical variates (one-fourth of the total number of canonical variates).
We use the same criteria as ten canonical variates (see the previous footnote). The reason to choose this
value comes from Pukthuanthong, Roll, and Subrahmanyam (2019): “This is a conservative threshold to
ensure we do not miss a true factor at our necessary condition stage. We focus on the significant canonical
correlations rather than all canonical correlations because insignificant CCs imply that none of the factors
matter, so using them would be over-fitting.”
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consistent average t-stat of the significant CC of 2 and the number of the significant CC of

3.5, well above 2.5. Only WMP, MKT, HML, and MOM pass this criterion in all testing

assets. MKT represents the most substantial pass. We conclude that risk factors are WMP,

MKT, HML, and MOM.

B.2 Second criterion: Risk premium estimation using FMPs

The second criterion of the PRS protocol requires that the global risk factors or the factors

that pass the necessary condition command a risk premium in the cross-section of asset

returns. To perform this step, we re-run the standard two-pass test with the factors that

pass the necessary condition. We report in Table B2 that except for the 1173 single-sorted

portfolios, WMP prices the other four sets of test assets after controlling all the other risk

factors that pass the first criterion of the protocol. We conclude that our War factor is a

genuine risk factor.

Table B1

Protocol Step 1: Correlation of WMP with the Systematic Risk of Returns

This table presents the results from the first step (necessary condition) of the protocol in Pukthuanthong,

Roll, and Subrahmanyam, 2019. Test assets include 118 long-minus-short portfolios from Hou, Xue, and

Zhang (2020) in Panel A, 1173 single-sorted portfolios from Hou, Xue, and Zhang (2020) in Panel B, 360

ML-based nonlinear portfolios from Bryzgalova, Pelger, and Zhu (2020) in Panel C, 104 own constructed

anomalies in Panel D, and 1173 own constructed nonlinear portfolios in Panel E. “WMP” is the War

mimicking portfolio; “mkt, smb, hml, rmw, cma, mom” are Fama and French (2018)’s six factors; “mkt,

smb, mgmt, perf” are Stambaugh and Yuan (2017)’s mispricing factors; and “r mkt, r me, r ia, r roe, r eg”

are Hou, Mo, Xue, and Zhang (2021)’s Q5 factors. The sample is from January 1967 to December 2016.
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Panel A: 118 LMS Anomalies

mkt smb hml mom rmw cma WMP mgmt perf r me r ia r roe r eg

Avg. T 1.67 1.36 2.23 3.25 2.26 1.44 1.64 1.66 1.56 1.36 1.34 2.01 2.14

Avg t (Sig. CC) 1.83 1.49 2.62 3.95 2.62 1.54 1.86 1.83 1.76 1.48 1.42 2.30 2.52

Decade 1 3.00 4.00 4.00 6.00 4.00 3.00 4.00 3.00 3.00 1.00 0.00 4.00 3.00

Decade 2 3.00 4.00 6.00 5.00 5.00 4.00 5.00 0.00 3.00 6.00 4.00 4.00 4.00

Decade 3 4.00 2.00 4.00 3.00 6.00 2.00 3.00 3.00 2.00 1.00 1.00 3.00 6.00

Decade 4 4.00 1.00 4.00 4.00 3.00 2.00 4.00 3.00 3.00 2.00 3.00 7.00 3.00

Decade 5 2.00 2.00 4.00 4.00 4.00 2.00 4.00 5.00 2.00 2.00 3.00 3.00 4.00

# Sign. CC 3.20 2.60 4.40 4.40 4.40 2.60 4.00 2.80 2.60 2.40 2.20 4.20 4.00

Panel B: 1173 Single Sorted Portfolios

mkt smb hml mom rmw cma WMP mgmt perf r me r ia r roe r eg

Avg. T 17.06 1.50 2.71 3.80 2.16 1.73 1.99 1.94 2.33 1.40 1.35 2.07 2.14

Avg t (Sig. CC) 20.19 1.63 3.07 4.43 2.42 1.90 2.17 2.15 2.58 1.49 1.38 2.32 2.41

Decade 1 5.00 5.00 4.00 8.00 4.00 3.00 5.00 3.00 6.00 2.00 1.00 2.00 5.00

Decade 2 6.00 6.00 5.00 5.00 3.00 6.00 6.00 3.00 5.00 4.00 3.00 4.00 5.00

Decade 3 4.00 1.00 3.00 3.00 6.00 2.00 3.00 5.00 2.00 0.00 1.00 5.00 2.00

Decade 4 5.00 2.00 7.00 5.00 5.00 4.00 3.00 6.00 4.00 4.00 5.00 3.00 5.00

Decade 5 4.00 0.00 5.00 3.00 4.00 3.00 3.00 4.00 4.00 2.00 2.00 6.00 3.00

# Sign. CC 4.80 2.80 4.80 4.80 4.40 3.60 4.00 4.20 4.20 2.40 2.40 4.00 4.00

Panel C: 360 ML-Based Nonlinear Portfolios

mkt smb hml mom rmw cma WMP mgmt perf r me r ia r roe r eg

Avg. T 11.23 1.80 1.86 2.90 1.35 1.24 1.65 1.26 1.34 1.43 1.12 1.62 1.14

Avg t (Sig. CC) 17.15 2.43 2.51 4.09 1.62 1.37 2.15 1.53 1.60 1.85 1.21 2.10 1.35

Decade 1 4.00 3.00 5.00 3.00 2.00 4.00 5.00 1.00 2.00 2.00 2.00 4.00 1.00

Decade 2 3.00 3.00 4.00 3.00 1.00 3.00 3.00 3.00 2.00 6.00 2.00 2.00 1.00

Decade 3 3.00 2.00 3.00 4.00 1.00 2.00 2.00 2.00 1.00 1.00 0.00 1.00 2.00

Decade 4 5.00 3.00 3.00 2.00 2.00 0.00 4.00 3.00 3.00 3.00 1.00 3.00 3.00

Decade 5 3.00 2.00 3.00 6.00 3.00 3.00 3.00 3.00 2.00 2.00 1.00 5.00 1.00

# Sign. CC 3.60 2.60 3.60 3.60 1.80 2.40 3.40 2.40 2.00 2.80 1.20 3.00 1.60

Panel D: 104 Own Constructed Anomalies

mkt smb hml mom rmw cma WMP mgmt perf r me r ia r roe r eg

Avg. T 2.14 1.52 2.35 2.89 2.44 1.40 1.76 1.62 1.82 1.27 1.21 1.93 1.80

Avg t (Sig. CC) 2.41 1.57 2.69 3.36 2.74 1.55 1.92 1.81 2.03 1.28 1.32 2.13 2.00

Decade 1 2.00 4.00 5.00 5.00 4.00 4.00 5.00 2.00 5.00 1.00 1.00 2.00 2.00

Decade 2 4.00 4.00 4.00 4.00 5.00 2.00 2.00 1.00 3.00 4.00 3.00 3.00 4.00

Decade 3 5.00 3.00 6.00 2.00 5.00 1.00 5.00 5.00 1.00 1.00 3.00 2.00 5.00

Decade 4 5.00 2.00 4.00 7.00 5.00 3.00 5.00 3.00 5.00 4.00 3.00 4.00 4.00

Decade 5 5.00 2.00 3.00 5.00 4.00 3.00 2.00 3.00 2.00 3.00 2.00 6.00 4.00

# Sign. CC 4.20 3.00 4.40 4.60 4.60 2.60 3.80 2.80 3.20 2.60 2.40 3.40 3.80

Panel E: 2190 Own Constructed Nonlinear Portfolios

mkt smb hml mom rmw cma WMP mgmt perf r me r ia r roe r eg

Avg. T 7.45 1.84 1.86 2.76 1.40 1.28 1.63 1.52 1.35 1.40 1.26 1.44 1.27

Avg t (Sig. CC) 11.00 2.38 2.46 3.90 1.77 1.50 2.06 1.81 1.72 1.73 1.50 1.79 1.47

Decade 1 4.00 3.00 5.00 5.00 2.00 4.00 4.00 1.00 3.00 2.00 4.00 1.00 1.00

Decade 2 4.00 3.00 3.00 5.00 2.00 1.00 3.00 3.00 2.00 2.00 1.00 4.00 3.00

Decade 3 3.00 2.00 3.00 3.00 2.00 3.00 2.00 4.00 1.00 1.00 1.00 0.00 4.00

Decade 4 6.00 2.00 2.00 5.00 4.00 0.00 3.00 4.00 3.00 4.00 2.00 5.00 2.00

Decade 5 4.00 5.00 3.00 5.00 3.00 3.00 0.00 4.00 4.00 5.00 4.00 4.00 2.00

# Sign. CC 4.20 3.00 3.20 4.60 2.60 2.20 2.40 3.20 2.60 2.80 2.40 2.80 2.40
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Table B2

Protocol Step 2: Two-Pass Regressions

This table presents the results from the second step (sufficient condition) of the protocol in Pukthuanthong,
Roll, and Subrahmanyam, 2019. Test assets include 118 long-minus-short portfolios from Hou, Xue, and
Zhang (2020) in Panel A, 1173 single-sorted portfolios from Hou, Xue, and Zhang (2020) in Panel B, 360
ML-based nonlinear portfolios from Bryzgalova, Pelger, and Zhu (2020) in Panel C, 104 own constructed
anomalies in Panel D, and 1173 own constructed nonlinear portfolios in Panel E. “WMP” is the War
mimicking portfolio; “mkt, smb, hml, rmw, cma, mom” are Fama and French (2018)’s six factors; “mkt,
smb, mgmt, perf” are Stambaugh and Yuan (2017)’s mispricing factors; and “r mkt, r me, r ia, r roe, r eg”
are Hou, Mo, Xue, and Zhang (2021)’s Q5 factors. The sample is from January 1967 to December 2016.

118 LMS 1173 Single Sorted 360 Tree-Based 104 Own Constructed 2190 Own Constructed

Anomalies Portfolios Nonlinear Portfolios Anomalies Nonlinear Portfolios

Intercept 0.001*** 0.001 -0.003 -0.004*** 0.007***

[5.540] [0.410] [-0.800] [-11.730] [3.420]

mkt 0.011*** 0.005 0.005* 0.006** 0.003

[3.400] [1.640] [1.680] [2.330] [1.530]

smb 0.003 0.004*

[1.640] [1.740]

hml 0.006*** 0.004*** -0.007*** 0.004*** 0.000

[3.580] [2.590] [-4.020] [2.790] [0.080]

mom 0.006*** 0.005** 0.007*** 0.006*** 0.007***

[2.850] [2.490] [3.470] [2.990] [3.110]

rmw 0.002 0.001 -0.001

[1.360] [0.690] [-0.520]

WMP -0.003* -0.002 -0.029*** -0.002* -0.011***

[-1.810] [-1.130] [-13.200] [-1.660] [-5.930]

mgmt 0.006*** 0.002 0.003*

[3.970] [1.070] [1.910]

perf 0.006*** 0.013***

[2.940] [5.850]

r roe 0.004*** 0.003*** 0.005*** 0.000

[3.210] [2.740] [2.700] [0.050]

r eg 0.008*** 0.006*** 0.009***

[7.380] [5.740] [6.520]

R2 0.529*** 0.319*** 0.620*** 0.486*** 0.336***
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C Details on Portfolio Construction

C.1 104 Own Constructed Anomalies

In this subsection, we report the descriptive statistics of our own constructed portfolios based

on Hou, Xue, and Zhang (2020).

Table C1

104 Own Constructed Anomalies

This table presents descriptive statistics of the portfolios we apply in our cross-sectional tests. Our sample

period is from 1967 to 2016. The candidate factors are constructed similarly to Hou, Xue, and Zhang (2020).

We use the same screening criteria, delisting procedure, and period similar to what they do. The first column

presents the identification numbers and names of the candidate factors according to their papers. The last

four columns present the number of observations, the mean of candidate factors, t-stat testing the mean is

statistically different from zero, and the standard deviation of candidate factors. All candidate factors are

based on one-month calculation, and these portfolios are equal-weighted returns. ***, **, and * present 1%,

5%, and 10% significance level.
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Candidate factors # obs mean t-stat std.dev

A. Momentum

A.1.1 Standardized unexpected earnings 534 0.01 4.97*** 0.04

A.1.2 Cumulative abnormal returns around earnings
announcement dates 521 0.02 8.57*** 0.04

A.1.4 Price momentum, prior 6-month returns 534 0.01 3.13*** 0.08

A.1.5 Price momentum, prior 11-month returns 534 0.01 4.24*** 0.08

A.1.6 Industry momentum 534 0.57 2.23** 5.90

A.1.7 Revenue surprises 534 0.00 1.37 0.04

A.1.10 The number of quarters with consecutive
earnings increase 533 0.00 1.76* 0.07

A.1.11 52-week high 529 -0.00 -0.18 0.07

A.1.12 Residual momentum, prior 6-month returns 534 0.00 1.40 0.06

A.1.13 Residual momentum, prior 11-month returns 534 0.01 3.89*** 0.06

B. Value versus growth

B.2.1 Book-to-market equity 534 0.00 2.17** 0.05

B.2.2 Book-to-June-end market equity 534 0.00 2.33** 0.05

B.2.3 Quarterly book-to-market equity 534 0.02 6.88*** 0.06

B.2.6 Assets-to-market 534 0.00 2.07** 0.06

B.2.8 Reversal. 534 -0.00 -1.81* 0.06

B.2.9 Earnings-to-price 534 0.00 0.93 0.06

B.2.12 Cash flow-to-price 534 0.00 0.12 0.05

B.2.14 Dividend yield 534 0.00 1.01 0.04

B.2.16 Payout yield 529 0.00 2.59** 0.05

B.2.16 Net payout yield 529 0.00 2.51** 0.05

B.2.18 5-year sales growth rank 534 -0.00 -0.72 0.04

B.2.19 Sales growth 534 -0.00 -1.13 0.04

B.2.20 Enterprise multiple 534 -0.00 -2.00** 0.06

B.2.22 Sales-to-price 534 0.01 2.68** 0.06

B.2.26 Intangible return 534 -0.01 -4.88*** 0.04

B.2.30 Equity duration 534 -0.01 -3.18*** 0.06

C. Investment

C.3.1 Abnormal corporate investment 534 -0.00 -2.11** 0.03

C.3.2 Investment-to-assets 534 0.00 4.03*** 0.01

C.3.3 Quarterly investment-to-assets 522 -0.00 -0.67 0.03

C.3.4 Changes in PPE and inventory-to-assets 534 -0.00 -3.01*** 0.03

C.3.5 Noa and dNoa, (changes in) net operating assets 534 -0.01 -4.06*** 0.03

C.3.6 Changes in long-term net operating assets. 534 -0.00 -3.00** 0.03

C.3.7 Investment growth 534 -0.00 -3.48*** 0.03

C.3.8 2-year investment growth 534 -0.00 -1.93** 0.03

C.3.9 3-year investment growth 534 -0.00 -1.38 0.03

C.3.10 Net stock issues 534 -0.00 -3.55*** 0.03
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C.3.11 Percentage change in investment relative to
industry 534 -0.00 -2.34** 0.03

C.3.12 Composite equity issuance 534 -0.00 -0.82 0.04

C.3.13 Composite debt issuance 534 -0.00 -0.42 0.04

C.3.14 Inventory growth 534 -0.00 -2.06** 0.03

C.3.15 Inventory changes 534 -0.00 -2.92*** 0.03

C.3.16 Operating accruals 534 -0.00 -2.17** 0.03

C.3.17 Total accruals 534 -0.00 -1.96* 0.04

C.3.18 Changes in net noncash working capital, in
current operating assets, and in current operating
liabilities 534 -0.00 -1.12 0.04

C.3.19 Changes in noncurrent operating assets 534 -0.00 -3.42*** 0.03

C.3.19 Changes in noncurrent operating liabilities 534 -0.00 -0.87 0.03

C.3.19 Changes in net noncurrent operating assets 534 -0.00 -3.34*** 0.03

C.3.20 Changes in book equity 534 -0.00 -0.28 0.05

C.3.20 Changes in net financial assets 534 0.00 2.04** 0.03

C.3.20 Changes in financial liabilities 534 -0.00 -1.34 0.02

C.3.20 Changes in in long-term investments 534 -0.00 -1.36 0.03

C.3.20 Changes in short-term investments 534 0.00 0.39 0.02

C.3.21 Discretionary accruals computed from Nasdaq
Index 516 -0.00 -1.94* 0.04

C.3.21 Discretionary accruals computed from NYSE
and Amex 534 -0.00 -1.41 0.03

C.3.22 Percent operating accruals 534 -0.00 -3.06*** 0.03

C.3.23 Percent total accruals 534 -0.00 -1.42 0.03

C.3.24 Percent discretionary accruals 534 -0.00 -2.31** 0.03

C.3.25 Net debt financing 528 -0.00 -1.94* 0.03

C.3.25 Net equity financing 528 -0.00 -0.80 0.05

C.3.25 Net external financing 528 -0.00 -1.83* 0.04

D. Profitability

D.4.1 Return on equity 534 0.02 8.13*** 0.05

D.4.2 4-quarter change in return on equity 528 0.00 2.71** 0.04

D.4.3 Roa1, Roa6, and Return on assets 534 0.01 7.40*** 0.05

D.4.4 4-quarter change in return on assets. 522 0.00 2.81*** 0.04

D.4.5 Assets turnover 534 0.00 0.54 0.04

D.4.5 Profit margin 534 0.00 0.24 0.05

D.4.5 Return on net operating assets 534 0.00 0.48 0.04

D.4.6 Capital turnover 534 0.00 0.89 0.04

D.4.7 Quarterly assets turnover 534 0.00 2.18** 0.04

D.4.7 Quarterly profit margin 534 0.00 2.43** 0.05

D.4.7 Quarterly return on net operating assets 486 0.00 2.37** 0.04

D.4.8 Quarterly capital turnover 534 0.01 3.63*** 0.04

D.4.9 Gross profits-to-assets. 534 0.00 1.90* 0.03

D.4.10 Gross profits-to-lagged assets 534 0.00 0.20 0.04

D.4.11 Quarterly gross profits-to-lagged assets 486 0.00 3.14*** 0.03
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D.4.12 Operating profits to equity 534 0.00 1.14 0.05

D.4.13 Operating profits-to-lagged equity 534 0.00 0.40 0.04

D.4.14 Quarterly operating profits-to-lagged equity 534 0.01 3.39*** 0.06

D.4.15 Operating profits-to-assets 534 0.00 2.04** 0.04

D.4.16 Operating profits-to-lagged assets 534 0.00 1.41 0.04

D.4.17 Quarterly operating profits-to-lagged assets 486 0.01 4.30*** 0.04

D.4.18 Cash-based operating profitability 534 0.01 3.53*** 0.04

D.4.19 Cash-based operating profits-to-lagged asset 534 0.00 2.76*** 0.04

D.4.20 Quarterly cash-based operating
profits-to-lagged assets 486 0.01 4.32*** 0.04

D.4.21 Fundamental score. 528 0.00 1.70* 0.03

D.4.24 Ohlsons O-score 534 0.00 0.32 0.04

D.4.25 Quarterly O-score 486 -0.00 -1.26 0.03

D.4.26 Altmans Z-score 534 -0.00 -2.01** 0.05

D.4.27 Quarterly Z-score 486 -0.00 -2.07** 0.05

D.4.29 Taxable income-to-book income. 534 0.00 0.24 0.03

D.4.30 Quarterly taxable income-to-book income 534 0.00 0.58 0.04

D.4.31 Growth score 348 0.00 1.08 0.08

D.4.32 Book leverage 534 0.00 0.44 0.04

D.4.33 Quarterly book leverage 534 0.00 0.14 0.04

E. Intangibles

E.5.1 Industry adjusted organizational
capital-to-assets 534 0.00 0.35 0.04

E.5.2 Advertising expense-to-market 534 0.00 0.17 0.03

E.5.3 Growth in advertising expense. 534 0.00 3.38*** 0.01

E.5.4 R&D expense-to-market 534 -0.00 -0.93 0.04

E.5.8 Operating leverage 534 0.00 0.44 0.03

E.5.9 Olq1, Olq6, and Olq12, quarterly operating
leverage 522 0.00 2.55** 0.03

E.5.10 Hiring rate 534 0.00 2.94*** 0.01

E.5.11 R&D capital-to-assets 534 0.00 0.25 0.04

E.5.12 Bca, brand capital-to-assets. 516 0.01 2.05** 0.07

E.5.17 Ha, industry concentration (assets) 534 -0.00 -1.25 0.05

E.5.17 He, industry concentration (book equity) 534 -0.00 -1.10 0.04

E.5.17 Hs, industry concentration (sales) 534 -0.00 -1.39 0.04

E.5.19 D1, price delay 534 0.00 0.98 0.04

E.5.19 D2, price delay 534 0.00 -0.11 0.02

E.5.19 D3, price delay 534 0.00 -0.41 0.02

E.5.20 % change in sales minus % change in inventory 534 0.00 0.44 0.00

E.5.21 % change in sales minus % change in accounts
receivable 534 0.00 1.08 0.01

E.5.22 % change in gross margin minus % change in
sales 534 0.00 2.28** 0.01

E.5.23 % change in sales minus % change in SG&A 534 0.00 1.43 0.00

E.5.24 Effective tax rate 534 0.00 1.43 0.00
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E.5.25 Labor force efficiency 534 0.00 1.17 0.00

E.5.26 Analysts coverage 485 -0.00 -0.43 0.03

E.5.27 Tangibility 534 -0.00 -0.83 0.03

E.5.28 Quarterly tangibility. 534 0.00 0.16 0.03

E.5.29 Industry-adjusted real estate ratio 534 0.00 0.47 0.04

E.5.30 Financial constraints (the Kaplan-Zingales
index) 534 0.00 1.52 0.03

E.5.32 Financial constraints (the Whited-Wu index) 534 0.00 0.12 0.03

E.5.33 Wwq1, Wwq6, and Wwq12, the quarterly
Whited-Wu index 534 0.00 0.33 0.04

E.5.34 Secured debt-to-total debt 534 -0.00 -0.65 0.03

E.5.35 Convertible debt-to-total debt 534 0.00 0.83 0.04

E.5.37 Cta1, Cta6, and Cta12, cash-to-assets 534 0.00 1.08 0.04

E.5.41 Earnings persistence 534 -0.00 -0.66 0.03

E.5.41 Earnings predictability 534 -0.00 -2.16** 0.04

E.5.42 Earnings smoothness 534 -0.00 -1.01 0.03

E.5.44 Earnings conservatism 534 -0.00 -1.48 0.03

E.5.44 Earnings timeliness 534 0.00 0.10 0.03

E.5.44 Earnings conservatism 534 0.00 0.76 0.02

E.5.44 Earnings timeliness 534 0.00 1.11 0.02

E.5.45 FRM, Pension plan funding rate 534 0.00 0.98 0.02

E.5.45 FRA, Pension plan funding rate 534 -0.00 -1.70* 0.03

E.5.46 Ala, asset liquidity 486 0.00 -0.12 0.04

E.5.46 Alm, asset liquidity 486 0.00 1.69 0.05

E.5.51 Average returns Ra1 534 0.00 7.55*** 0.00

E. 5.51 Average returns Ra[2,5] 534 0.00 3.60*** 0.00

E.5.51 Average returns Ra[6,10] 534 0.00 3.55*** 0.00

E.5.51 Average returns Rn1 534 0.00 4.95*** 0.01

E. 5.51 Average returns Rn[2,5] 534 0.00 3.35*** 0.01

E.5.51 Average returns Rn[6,10] 534 0.00 3.14*** 0.01

E.5.51 Average returns Rn[16,20] 534 0.00 1.15 0.04

F. Trading frictions

F.6.1 Me, market equity 534 -0.00 -0.48 0.05

F.6.2 Ivff1, Ivff6, and Ivff12, idiosyncratic volatility
per the Fama and French (1993) 3-factor model 534 -0.01 -2.54** 0.09

F.6.3 Iv, idiosyncratic volatility 534 -0.01 -3.41*** 0.08

F.6.5 Ivq1, Ivq6, and Ivq12, idiosyncratic volatility 534 -0.01 -3.34*** 0.08

F.6.6 Tv1, Tv6, and Tv12, total volatility 534 -0.01 -3.43*** 0.09

F.6.8 beta 1, beta 6, and beta 12, market beta 534 0.00 -0.12 0.08

F.6.9 beta FP1, beta FP6, and beta FP12, the
Frazzini-Pedersen beta 534 -0.01 -1.53 0.10

F.6.10 beta D1, beta D6, and beta D12, the Dimson
beta 533 -0.00 -0.51 0.06

F.6.11 Tur1, Tur6, and Tur12, share turnover 534 -0.00 -0.82 0.06

F.6.12 Cvt1, Cvt6, and Cvt12, coefficient of variation
of share turnover 533 0.00 -0.11 0.03
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F.6.13 Dtv1, Dtv6, and Dtv12, dollar trading volume 533 -0.00 -0.60 0.03

F.6.14 Cvd1, Cvd6, and Cvd12, coefficient of variation
of dollar trading volume. 533 0.00 0.37 0.03

F.6.15 Pps1, Pps6, and Pps12, share price 534 0.00 0.13 0.08

F.6.16 Ami1, Ami6, and Ami12, absolute
return-to-volume 533 -0.00 -0.40 0.05

F.6.17 Lm11, Lm16, Lm112, turnover-adjusted
number of zero daily volume 533 0.00 -0.01 0.06

F.6.17. Lm121, Lm126, Lm1212, turnover-adjusted
number of zero daily volume 533 0.00 0.70 0.06

F.6.17, Lm61, Lm66, Lm612, turnover-adjusted
number of zero daily volume 533 0.00 0.71 0.06

F.6.18 Mdr1, Mdr6, and Mdr12, maximum daily
return 534 -0.01 -2.59** 0.07

F.6.20 Isc1, Isc6, and Isc12, idiosyncratic skewness per
the CAPM 534 0.00 2.25** 0.03

F.6.21 Isff1, Isff6, and Isff12, idiosyncratic skewness
per the Fama and French 534 0.00 2.76*** 0.03

F.6.23 Cs1, Cs6, and Cs12, coskewness 534 -0.00 -0.81 0.03

F.6.25 beta lcc1, beta lcc6, beta lcc12, liquidity betas
illiquidity-illiquidity 533 0.03 9.20*** 0.06

F.6.25 beta lcr1, beta lcr6, beta lcr12, liquidity betas
(illiquidity-return) 533 0.00 0.44 0.04

F.6.25 beta lrc1, beta lrc6, beta lrc12, liquidity betas
return illiquidity 533 -0.00 -1.63 0.05

F.6.25 beta net1, beta net6, and beta net12, liquidity
betas (net) 533 0.01 1.86* 0.08

F.6.25 beta ret1, beta ret6, and beta ret12, liquidity
betas (return-return) 533 0.01 1.89* 0.08

F.6.26 Short-term reversal 533 0.00 1.31 0.05

F.6.27 beta -1, beta -6, and beta -12, downside beta 533 -0.00 -0.63 0.07

F.6.31 beta PS1, beta PS6, and beta PS12, the
Pastor-Stambaugh beta 534 0.00 0.30 0.04

C.2 2190 Own Constructed Nonlinear Portfolios

We construct 2190 portfolios based on the nonlinear functions of nine characteristics that

Freyberger, Neuhierl, and Weber (2020) find significantly explain cross-sectional stocks re-

turns. We call them nonlinear portfolios or factors. We apply the following procedure to

construct these portfolios. As an indication, we use three characteristics (X1, X2, and X3)

as an example.

[1] We generate the following characteristics up to polynomials of degree 3, including
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X1, X2, X3, X1X2, X1X3, X2X3, X1X2X3, X1X1X3, X1X1X2, X1X2X2, X2X2X3,

X1X3X3, X2X3X3, X12, X22, X32, X13, X23, X33.

We alleviate multicollinearity concerns among these characteristics by orthogonalizing

each characteristic using a residual from regressing characteristics on its linear and

nonlinear components. For instance, we use the residual of regressing X1X2X2 on X1,

X2, X1X2, and X2X2 instead of using X1X2X2 directly, or the residual of regressing

X1X2 on X1 and X2, instead of using X1X2. Generally, we use X3-C1*X-C2*X2 where

C1 and C2 are estimated coefficients from regressing X3 on X and X2, respectively to

eliminate the impact of both X and X2 from X3, or X2-C2*X1, which is a residual from

regressing X2 on X1.

There are two benefits of using residuals. First, the residual methods can remove all

the possible correlations between X and X2. Second, if X’s have different sign (for

instance, X1=-2, X2 = 0, and X3=1), X1 < X2 < X3 but X22 < X32 < X12 and

X13 < X23 < X33. The relation is not monotonic if X1 to Xn have different signs.

Using residuals will take care of this regardless of the sign.

[2] We standardize characteristics firm by firm in each time to avoid look-ahead bias and

prevent the mis-ranking issue.

[3] We sort stocks into deciles based on transformed characteristics above and calculate

the average returns next period by group and assign them to the corresponding char-

acteristics and decile (for example, X1 1).

[4] We create long-short portfolios, i.e., portfolios ten minus one for each transformed

characteristic.

[5] We use 360 ML-based nonlinear portfolios developed by Bryzgalova, Pelger, and Zhu

(2020) (see Appendix C.3 for the list and description).4 These portfolios can capture

the higher dimensional nonlinear information from characteristics.

4We thank Marcus Pelger for generously providing us with the portfolio data.
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Table C2

2190 Own Constructed Nonlinear Portfolios

This table presents nine characteristics selected by Freyberger, Neuhierl, and Weber (2020) and 2190 non-

linear characteristic-sorted decile portfolios constructed based on 219 characteristics. See Section C.2 for

the detailed construction. The nine characteristics are agr defined as annual percent change in total as-

sets from Cooper and Priestley (2009), chcsho or annual percent change in shares outstanding from Pontiff

and Woodgate (2008), mom1m defined as 1-month cumulative return from Jegadeesh and Titman (1993),

mom12m defined as 11-month cumulative returns ending one month before month end from Jegadeesh

(1990), mom36m defined as cumulative returns from months t-36 to t-13, operprof or revenue minus cost of

goods sold, SG&A expense, and interest expense divided by lagged common shareholders’ equity (Fama and

French, 2015), mve or natural log of market capitalization at end of month t-1 from Banz (1981), retvol or

standard deviation of daily returns from month t-1 from Ang, Hodrick, Xing, and Zhang (2006), and turn

or the average monthly trading volume for most recent 3 months scaled by number of shares outstanding in

current month from Datar, Naik, and Radcliffe (1998).
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C.3 360 ML-based Nonlinear Portfolios

This subsection shows 360 ML-based nonlinear portfolios for each characteristics groups,

each containing ten decile portfolios. See Bryzgalova, Pelger, and Zhu (2020) for the detailed

construction and the following tables for variable descriptions.

Table C3

360 ML-based Nonlinear Characteristics Groups

LME AC IdioVol

LME AC Lturnover

LME BEME AC

LME BEME IdioVol

LME BEME Investment

LME BEME LT Rev

LME BEME Lturnover

LME BEME OP

LME BEME r12 2

LME BEME ST Rev

LME IdioVol Lturnover

LME Investment AC

LME Investment Idiovol

LME Investment LT Rev

LME investment Lturnover

LME Investment ST Rev

LME LT Rev AC

LME LT Rev IdioVol

LME LT Rev Lturnover

LME OP AC

LME OP IdioVol

LME OP Investment

LME OP LT Rev

LME OP Lturnover

LME OP ST Rev

LME r12 2 AC

LME r12 2 IdioVol

LME r12 2 Investment

LME r12 2 LT Rev

LME r12 2 Lturnover

LME r12 2 OP

LME r12 2 ST Rev

LME ST REV AC

LME ST Rev IdioVol

LME ST Rev LT Rev
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Table C4

10 ML-based Characterisrics

Symbol Names Description References

AC Accrual

Change in operating working capital per

split-adjusted share from the scal year Sloan, 1996

BEME

Book-to-Market

ratio

Book equity is shareholder equity (SH) plus

deferred taxes and investment tax credit

(TXDITC), minus preferred stock (PS). SH

is shareholders equity (SEQ). If missing, SH

is the sum of common equity (CEQ) and

preferred stock (PS). If missing, SH is the

difference between total assets (AT) and total

liabilities (LT). Depending on availability, we

use the redemption (item PSTKRV),

liquidating (item PSTKL), or per value (item

PSTK) for PS. The market value of equity

(PRC*SHROUT) is as of December t-1.

Basu, 1983, Fama

and French, 1992

IdioVol

Idiosyncratic

volatility

Standard deviation of the residuals from a

regression of excess returns on the Fama and

French three-factor model

Ang, Hodrick,

Xing, and Zhang,

2006

Investment Investment

Change in total assets (AT) from the fiscal

year ending in year t-2 to the fiscal year

ending in t-1, divided by t-2 total assets

Fama and French,

2015

LME Size

Total market capitalization at the end of the

previous month defined as price times shares

outstanding

Banz, 1981, Fama

and French, 1992

LT Rev

Long-term

reversal

Cumulative return from 60 months before the

return prediction to 13 months before

De Bondt and

Thaler, 1985

LTurnover Turnover

Last month’s volume (VOL) over shares

outstanding (SHROUT)

Datar, Naik, and

Radcliffe, 1998

OP

Operating

profitability

Annual revenues (REVT) minus cost of

goods sold (COGS), interest expense (TIE),

and selling, general, and administrative

expenses (XSGA) divided by book equity

(defined in BEME)

Fama and French,

2015

r12 2 Momentum

Return for the first 12 months except for the

first month Jegadeesh, 1990

ST Rev

Short-term

reversal Prior month return Jegadeesh, 1990
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