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Appendix E. Proof of Proposition 1

Let B be the matrix of true values of betas for all factors and assets. When there are K factors

and N assets, it is a KxN matrix. Next, let ﬁ,v and ﬁEV (KxN matrix) be estimated betas,

where “IV” subscript indicates the beta instruments and the “EV” subscript denotes the
corresponding explanatory variables, respectively. We define 1V and EV periods as separate
periods of data used to estimate IV and EV betas, respectively, which can be either odd months or

even months over a rolling estimation window. For example, if IV period includes odd months,
EV period includes even months. The symbol “~” indicates an estimate. Define B,y =[L,; Byy]
and ﬁEV = [11><N;ﬁEV]! where 1,y denotes a 1x N vector of ones! and the operator “;” stacks the

first row vector on top of the second matrix. Hence, 1§,V and EEV are (K+1)x N matrices, each
of which contains a vector of ones and K estimated factor loadings for N assets. Similarly, define
B= [11X,\,;|3] as the matrix that contains a vector of ones and the matrix of true betas. Equivalently,
we can write this matrix as N column vectors, i.e. B = [bl,--',bN], where b' = [1; B'l,,B'K] for
asset 1.2

Assuming that we have T+1 months, we use T months to estimate IV and EV betas, and run

a cross-sectional regression in time T+1. Define I'; as the 1x N vector of excess returns in time

! We will use this convention to define vectors or matrices of ones and zeros.
2 Note that we use superscript i to indicate asset i in the Internet Appendix.



t. Let T, denote the factor realization in time t; it is a 1x K vectors. And let &, = [si,sf,---,sf‘] :

Itisa 1x N vector of regression residuals in time t for N assets in Eq. (2) in the main text. Assume

that factors have zero means (or they are demeaned factors). The first-stage time-series regression
(Eg.(2) in the main text) can be written as I, =0!+ft[3+£t where a =[d',---,a"], which is a
1x N vector.

Using OLS methods, we estimate IV and EV betas over the IV and EV periods, respectively.

Assuming that T is even, the estimation error for IV beta can be expressed as follows:

A

1 -1 1
Byv—-B= (Flti/ Fle\l/) I:lci/ va =U,y,

where F, =[f;f0---f%] is a T/2x K matrix when the IV period includes odd months, or
Fo=[ff0 ] is a T/2xK matrix when the IV period includes even months.
Q?V:[af;sg;"';ﬁfjr_l] is a T/2xN matrix when the IV period includes odd months, or

Qf\,:[sg;si;"';si] is a T/2xN matrix when the IV period includes even months. The

superscript d indicates a demeaned factor or demeaned residual, where average values of factors

or residuals are taken over the corresponding IV  period. For example,

2 2
fld =f, —?(fl +f; +--+f1,) and f, =f, _?(fz +f, ++-+f.) . From the above expression

for B, —PB, we obtainB,, ~B=[0,,; (Ff{,'Fﬂ, )_1 Fr,' Q% ]. Similarly, it can be easily shown that

the estimation error for EV beta is ﬁEV—B:(Fg\,'FSV)_lFSV‘Q‘éVEuEV , leading to

B, -B= [leNi(ng'ng )_IFSV'QEV], where FS, and Q¢ are similarly defined as F, and Q)

respectively.
The model for expected returns follows Eq. (1) in the main text. If riskless borrowing and
lending are allowed, then the zero-beta asset earns the risk-free rate and its excess return is zero,

i.e. in Eq. (1), Yo =0. Thus, the cross-sectional regression model with Y, =0 and ex-post risk



premium (defined as f;,, +v) can be written as r;,, = (f;,; +Y)B +&;,,, where gammaisa 1l x K

vector of ex-ante risk premium.® We rewrite it to

Mg =g +VBey + (Fry +1)B-PBey) + &1,
Let E.>$\+/1 =(f +7)PB-PBo)+&r =—(Fr  +7)Ug, +&r,,and let I' = O,y + fT+1) a
1x (K +1) vector that contains the ex-post risk premiums. The assets' returns in time T+1 can be

written as
4l EV
Ma= rBEV + §T+l'

We then propose the following 1V estimator for ex-post risk premium in month T+1:

fm': (BIVBEV ')_1 (Bwrm'). (EQ. (4) in the main text)

In order to show the N-consistency of the IV estimator (which is I';,;), we need to make the

following regularity assumptions:

(A1) The residual process {Et,t =1, T}, where € = [Si,Sf,m,S{\'], is stationary with zero mean

and finite fourth moments. In addition, S't and sé are uncorrelated as long as S # t. Moreover, for

1
any S#t, N (g€ +---+€'€l) have finite variances.

*Rewriting Eq. (1) (with v, = 0) and Eq. (2) in the main text in matrix notations, we have E(I’m) =YP denoted as
Eq. (1’) and ry, =a+f B+, denoted as Eq. (2°) where ¥ =[y,,-*-,v«], @ =[a',---,a™], and
€1, =[5, -+, &7,,]. With the assumptions that E(f,) =0 and E(g,) =0, taking the expectation of Eq. (2)
produces E(r;,)=a denoted as Eq.(2”). Combining Egs. (1), (2°), and (2”) gives us
rra=Fra+7)B+er,.



(A2) The factor process {f;,t=1,T} is stationary with finite fourth moments, and is

independent of the residual process {Et,t=1,"',T}.

(A3) For any i and t, the elements inb'and Sit are uncorrelated. For any t, the elements in

1
m(blsi +---+b"e!') . Moreover, when N—oo, BB'/N converges to an invertible matrix bb'
(=E(b'(b'))).

Note that the Assumptions (A1) and (A3) are satisfied if in each time t, the residuals in [si 1y StN]

are asymptotically weakly correlated (Shanken,1992), regression residuals have finite fourth

moments, and the maximum values of betas across all stocks are finite.
With the Assumptions (Al) to (A3), N-consistency is presented in Theorem E.

Theorem E (Consistency, Proposition 1 in the main text) Assuming (A1) to (A3), the estimated

risk premium 1 '= (%ﬁ,vﬁw')*l(%ﬁ,vrm') converges to I'" when N approaches to infinity.

Proof of the consistency: Note that
r 1 1 1 D 0 "\ — 1 0 !
I, -I'= (NBNBEV ) 1(NBIV§$¥1 -
To show the consistency as N goes to infinity, we need to prove the following two convergences:

1 - 1 1 : i 1 -1 1 iyt i
—B,, $\+/1 = NZ(b +[0; (Fﬂ/ F&/) Fl(il (S?V) ])‘25\11 - 0(K+1)><l and

i=1

N
1. ~ 1 v=d Yld ) , 1 g .
N BBy = 1 B0, (R ) R QU DB + [0, (RS FL ) R 8 ])

= %i((bi +[0;(FS, FS VRS () Do +[0; (FS,'FS, )RS, (e4))' 1)) — bb

i=1

Here, Sf\} isa 1x T/2 vector that contains the demeaned residuals for asset i in the 1V period, and

s‘é\', isa 1xT/2 vector that contains the demeaned residuals for asset i in the EV period. For
example, if the IV period includes odd months, and the EV period includes even months,

d,i di _di di d,i di di d,i i i 2, i i
£|\I/:[81I’83I1.“|8T.Il] and 8E\I/:[82I184Il.“!g'l'l] Where 8;“ES![_?(S:IL+8I3+.“+81|—*1)



when tis odd, and &' =&} ——(g +g +---+€") whentis even. Moreover, £5Y,, a 1x N vector,

can be written as [£5), -+, $\+’1N

Under Assumptions (Al) to (A3), we now have the following observations:
1. Forany i, E(0'E54) = 0y, EO'I0:(FYFY) Y (65)T) = Opernn

E('(10:(FS, R ) 68)1) = e

£ (R R ) R R IO (R PR ) P (6 = Oy and

1 -1 1 1y —
EQ0:(FL o) Rl @) IERS) = O
1
Since the elements in m(blsi +---+b"e") have finite variances for any time t

1
(Assumption (A3)), it is clear that the elements in m(bliilil +--+b"ETAY) have finite

variances. For the same reason, the elements in

(FR/'FK/) Fiv' (e ) T+ +bM[O; (Ffjv":fi/) Frv'(ey')'T) have finite variances, and

%(bl[o
the elements in %(bl[o; (FS, F RS (el T+ b0 (RS FS RS @)'T) have
finite variances.

I1. If regression residuals have finite fouth moments (Assumption (Al)), and

1
N (gie; ++-+€,€)') have finite variances for any $#t (Assumption (A1), then for any i,

N .
the elements in TZ (F,‘{,'Fﬂ,) Fo'(e0)'1EEY) have finite variances, and the elements
-1

m—Z([O (F,‘i,'F,‘i,) F'(e%)[0; (F,;’V'Fd ) FS,'(€%)'T) also have finite variances.

=2

With the observations I, I1, and I11, apply Markov’s Law of Large Numbers,



1<, EV,i

N;b §T+1 - 0(K+1)><1

13 died Yed v diyiqeEVL

NZ([O;(FIV FIV) Fv'(Ew) 6w) = 0(K+1)><1
i=1

1< fed ved Yled v ndiyi aiye

NZ([O7(FIV FIV) Fv' (€)' 10'))— O(K+1)X(K+l)
il

1 : i . d 1d -1 d vz di yviq
NZ (b'[0; (FEV FEV) Fov'(gav)'])— 0(K+1)><(K+1)
i=L

13 ed ied Yied odinerae (Ed rpd Yied gadioyee
NZ([Q(FIV |:|v) Fiv' (&) ][01(FEV FEV) Fev'(€ev) 1) 0 kayen)
=1

From Assumption (A3), BB'/N converges to bb'. Together with the equations above, we have

l " 1 1 N i 1 -1 ] iyt i
NBIV $\+/1 = NZ(b +[0;(F|(i/ Fl(i/) FR/ (Sfi/) ])(éill ) - O(K+l)><l, and
i=1
1 - - 1 1 1 | [ . 1 B 1 1
NBIVBEV = N(B +[O1XN;(F£/ Fl(i/) lFl(i/ Q:jv])(l?' +[01><N’(F|gv ng) ngv Qcév])

= LS 10 R R DO [0 R R 65 D) b

We also derive the conditional and unconditional asymptotic distributions of the IV estimator

as N goes to infinity. These theorems and proofs are available from the authors upon request.

Appendix F. Consistency of IV estimator with time-varying betas

Theorem E requires that betas and true risk premiums are constant. In this section, we relax
this assumption (but still keep Assumptions (Al) and (A2) in Appendix E). With the assumption
that riskless borrowing and lending are allowed, Eq. (1) in the main text with time-varying betas

and risk premiums can be written as:



E(r! | Yt,lv"'lYt,K’BIt,lf'"BIt,K) = ZBItk XYyt
k=1

Here B}, is the beta of factor k for asset i in time t, and Y.« 1 the risk premium for factor k in time

. . K . .
t. Similarly, the first-stage time-series regression can be written as: I, =o' + ZB'U( xf +¢. Let
k=1

By =B\ + Uy, where B} is the unconditional mean of the beta of factor k for asset i, and U}, is

the shock in beta in time t.

We can rewrite the above equations in vector and matrix notations. Assume that the true risk

premium Y., a 1x K vector, is also time-varying and satisfies the following assumption:
Assumption (G): Forallt,sand i, 7Y, isindependent of the regression residual Sis :

Let Bit ,a Kx1 vector, be the betas of K factors for asset i in time t, and Bi be its unconditional
mean. Let @ =[o*,---,a™]. Inaddition, Let B; =P’ +U;, where the time t shockU} isa K x1 vector.
1 N 1 N 1 N .. .
Denote B=[B",---.p" ], B, =[B;.---.B; ] and U, =[uy,--,u; ]. The asset pricing model in Eq.
(1) in the main text with time-varying betas and risk premium can be written as

E(rm|YT+1,I3T+1)=YT+1I3T+1 (with Y, =0), and the first-stage time-series regression can be
written as I, = (1+ft[3t + &;. With the similar derivation in Appendix E, we can show that the

cross-sectional regression model can be written as I't,; = (fm TV~ E(fm | Y1 ﬁm))ﬁ TV,

where Vo, =&+ (fr + 750 —E(fry [ V10 Braa))Ura .

Define B=[1,:B], ]§|v = [11><N;I§IV] and i)’w = [11><N;BEV] where ﬁw and BEV are the
estimated betas in the IV and EV periods, respectively. The first-stage time-series regression can

be written as I, =@ +fB+€, where e, =&, +fu,. The estimation errors for IV and EV betas are:

* Note that we use superscript i to indicate asset i in the Internet Appendix.



A ' _1 '
BIV -B= (Flfi/ Flti/) Flti/ E?w

A

1 -1 1
BEV -B= (Flgv ng) Flgv Ecév )

respectively, where ES, (E, ) is defined similarly to Q) (QL,) in Appendix E, by replacing

with €, .

Denote I';,;, a 1x (K +1) vector, as the ex-post risk premiums in time T+1 (defined as

r,,=0f,+v:.,—E{;..]1vr.1,Br.1))). Following the same derivation in Appendix E,

the cross-sectional regression model can be written as

_ 5 EV
Iy =T Bey +8

T4’

where %EZ =(Fra + V70 —E(fra Y70 Br)) B - ﬁEV) TVra-

The 1V estimator is fT+1': (l§,Vl§EV Nt (ﬁw"m')- We can show two types of consistency of this

estimator, with different assumptions on the dynamcs of Uit .

Assumption (U1): For all t, s and i, uit is independent of f, (factor in time s), Sis (regression
residuals in time s), unconditional mean of beta B' and Y (risk premium in time s). It also has
zero mean and finite fourth moment. In addition, Uit and Ui are uncorrelated as long as S#1.

Moreover, for each asset i, the stochastic process {Uit =1 T}is stationary. Moreover, for any

1 , . 1 . .
s#t, elements inm(ui(u1)+---+ut“(usN) )andm(ui?é +---+Ur€)) have finite variances.

Assumption (U2): For all t, s and i, Uit is independent of f, (factor in time s), Sis (regression

residuals in time s), unconditional mean of beta B' and Y (risk premium in time s). It also has

zero mean and finite fourth moments. In addition, for each asset i, the stochastic process

{Uit,t =1,--, T} is stationary and ergodic.



The key difference between those two assumptions is the autocorrelation of {Uit,t =1, T}

process. Assumption (U1l) imposes no autocorrelation, while (U2) relaxes this assumption. In

addition, since uit is independent of f. ., we have E(f;,; | Y1, Br.y) = E(Fr.y | Y1..) . Therefore,
%E\i =(fra+¥ra —EFra [ vr)B—Bey) + &1y + (Fra + ¥ —E(fra [ ¥10))Ura and

FT+1 = (OffT+l Y1~ E(fT+1 | VT+1)) . Since fr; +v+,,—E(fr,|v+.) is independent of

uitand Sit for any t and i (Assumptions (G) and (U1)), we can show that &E\i has zero mean.

We also impose the following assumption on uit process, Sit and matrix B (which can be

written as [b*,---,b"] as in Appendix E).

1 1
Assumption (B): The elements in m(bl(u%)'+---+b“‘(u{“)') and m(blai +---+b"el') have

finite variances for any t, and when N—o, BB'/N converges to an invertible matrix bb'

=E(b'(b")")). In addition, for any i and t, the elements in b'and €} are uncorrelated.
(= E( y t

We write &' (1x N vector), as [£5,++, 55" ]. Assumption (B) implies that the elements
1 . i
in m(blﬁfz'l +--+b"E™"™) have finite variances, since £ is a linear combination of U, s

and €; ’s. Assumptions (U1) and (B) imply that &' and b' are uncorrelated, i.e.

E(bigz’i) = O(K+1)><l'
With the assumptions above, we state the following Theorem F:

Theorem F (1) (N-Consistency) Assuming (Al), (A2), (G), (Ul) and (B), the estimated risk

i ~ 1. - 14 . e
premium I'; ,'= (NB,VBEV')’l(NBIVrm') converges to I';,;" when N approaches to infinity.



(2) (Sequential consistency) Assuming (Al), (A2), (U2) and (B), the estimated risk premium
fm'E(%ﬁ.vﬁEv')*l(%ﬁ,vrm') converges to T'r,;" when we take a probability limit as T
approaches to infinity first, and then take a probability limit as N approaches to infinity.

Proof of (1): With the assumptions above, the proof will be exactly the same as the proof for
Theorem E, by replacing %, (24, ) with ES, (EY, ), and & with € (=¢, +fu,).

Proof of (2): Similarly to the proof for Theorem E,

- 1 1 1 - - " — 1 0 !
FT+1 _FT+1 = (NBIVBEV ) l(NBN&..EV )

T+

We have shown that
A , 1 \
BIV -p= (Fﬂ/ Fﬂ/) Flci/ E?v’
ﬁEV -P= (FSVIFISV )71 FSVIE?EV .

Let €, =[ei,'-',etN]. Since eit is a linear combination of uit and sit,from Assumptions (Al), (A2)
and (U2), it is clear that the stochastic process {eit,t =1,--, T} is stationary and ergodic with zero
mean and finite fourth moment, and for any i, eit is independent of factors. Taking a probability

limitas T approaches to infinity, ﬁlv - B, ﬁlv — Band éf\i — V1, following the Markov’s law

of large number. Hence,

1 > - 1 — 1 -l ' 1 '\ 1 ,
(NBIVBEV ) 1(NB|V§EX )—) (NBB) l(ﬁBvTﬂ )

Next, since Vv, is a linear combination of U, and €, , from Assumptions (B) and (U2),

1 . :
E(Bv,,") =04, and the elements in m(blvlT+1 +---+b"VE,) have finite variances when

N—oo. In addition, from Assumption (B), (%BB') — bb'as N appraoches to infinity. Apply

10



> 1 w1, 1 .
Markov’s law of large numbers, (NBB) 1(N]_>.\,T+l)_>o(k+l)xl when N-—oo.  Therefore,

(%E,VEEV')*(%B,V&EX')a Ogopa (i€ Tp,' converges to T'r,,") when we take a probability

limit as T approaches to infinity first, and then take a probability limit as N approaches to infinity.

Appendix G. Time-varying characteristics

In this section, we incorpate stock characteristics into the cross-sectional regression: i.e. in
the second-stage regression, the independent variables are estimated betas as well as characteristics
of stocks. We also assume that both estimated betas and characteristics are proxies for the true
factor loading (true betas), and they are correlated cross-sectionally. Thus, characteristics are used
both as instruments for beta estimates and as control variables. We propose a new IV estimator:
the IV mean-estimator, and prove its convergence to the ex-post risk premium as the dimensions
of cross-section and time-series grow indefinitely. The estimator in Proposition 2 in the main text
is a special case of the IV mean-estimator proposed in this Appendix.

The dependent variable of the IV mean-estimator in the second-stage cross-sectional

. - 1 A
regression is the average return rp, = — Zrt over the months not used to construct B,,, and
m teDV

ﬁEV (we call them the dependent variable period or the DV period, and assume that the DV period
has T, months). Without loss of generality, we assume that 1V and EV betas are constructed using

observations from months 1 to T, and the DV period has observations from months T +1 to

T+T,.

Following the similar derivations in Appendices E and F, we can show that for any t in the

DV period, the asset return with time-varying beta and true risk premium can be written as

o= +y, —E |y, B.))B, +& . From Assumption (U2), we have E(f,|v..B,) =E(, |v,),

leadingto I, = (ft Y~ E(ft |Yt))|3t TE.

11



The cross-sectional regression model of regressing the average return over the DV period on

the estimated beta over the EV period can be written as I, = F1§EV + &y, where T is defined

1
as (O,T— Z(ft +v, —E(f, [v,))), and the residual &, (1x N) takes the following form:

m teDV

Eov = (i (v, - wt»j(BDV )+ = (1~ B 76~ Bow) 4oy

Tm teDV m teDV

= 1 1
where Bpy = T D Brand &y =— ) &, .

m teDV Tm teDV
Recall that B, =P+U, , where the shock in beta is U, =[u,~-,u’] .5 Moreover, let

o .
d, d d1 d,N . . . .-
U =uy ==Y ul and U =[uf,-,uf™], which is demeaned residual in time t, and a Kx N
m sebDV

matrix. Decomposing B, into its two components, i.e., p and U,, the above regression residual

&y Can be re-written as

‘;;Dv :[Ti Z(ft +v— E(ft |71))j(ﬁ_ﬁEv) +[Ti Z(ft Y~ E(ft |Yt))J(Ti zutj

+Ti S, + v~ E(F, [ y))ue )+ o,

m teDV

Denote Cit as a vector of characteristics for asset i in time t. Assume that there are L
characteristics, so Cit is a Lx1 vector. Similarly to time-varying betas, we assume that the

characteristics can be decomposed into the two parts: Cit =¢' +1)it, where ¢' is the unconditional
expected value of characteristic for asset i, and v; is the shock in characteristic in time t. We make

the following assumption on v .

5 Note that we use superscript i to indicate asset i in the Internet Appendix.

12



Assumption (C): For each asset i, the process {Dit,t=1, -+, T} is stationary and ergodic with zero

mean and finite fourth moments.

In addition, denote CZ[CI,'",CN], an LxN matrix, as the unconditional expected value of

T,-1
characteristic. Take the average of characteristic from T—T . +11to T: C ETi C;., with
c t=0

C, =[Ci,“',C{“] an LxN matrix.® With characteristics as control variables and additional
instruments for beta estimates, we run the following cross-sectional regression:
oy = FﬁEV +KE+§EV, where the slope coefficient of characteristics, denoted by K, is an

1x L vector. When characteristics play roles of proxies for the true factor loadings, i.e. they do
not affect the cross-section of expected returns by themselves, the true value of K is zero if the
beta estimates are included in the regression. Under this null hypothesis, in above regression,

Eov =&y, Where &, is the error in the regression without characteristics. The estimated slope
coefficents of our cross-sectional 1V regression are given as

[f,f«]'=[%[B.V;E][ﬁw:él']_( [B.V,C] Zr]

m teDV
where [B,,; C] (whichisa (K + L +1)x N matrix) stacks B,, over C .

In order to show the convergences of the estimated slope coefficients above, we need to
specify the regularity assumptions. To simplify the notations in the assumptions, we define the

following two variables:

( D (Fo+y - E(ﬂl%)))((%':é’v":é’vj (fsd'eg’i)J,Y

m teDV

® In proposition 2, we assume that T, = T , but here we relax this assumption.

7 Assuming that T is even, FS, =[f2;f8---;f2,] isa T/2 x K matrix when the EV period includes odd months,

or FS, =[f2;f2;---;f%] is a T/2 x K matrix when the EV period includes even months. The superscript d

13



for any s in the EV period, where e =g +fu; , and e’ =e;—=> e, . Hence
teEV

[ .8 -—25] ( D (v - E(flvt))J(B Bev)-

SEEV SeEV m teDV

[ Z(f +v, —E(f, |'Yt))JU +(f, + v, —E(f [ v))ud" +e,

m teDV

for any s in the DV period, leading to

1 T+Th T+Th

[— Z 1o Zn 1=
Tm s=T+1 m s=T+1
. -
(_ Z(ft Y~ E(ft | Yt))j[ ZU ]+_ Z((fs Y~ E(fs |’Ys))ug>+ €pv
Tm teDV m seDV Tm seDV
Therefore, these two variables 3. and n. can be used to decompose the regression residual &5,
in the convergence proofs below. More specifically, define &F, =[&5), -+, &50]1 . then
T+T,
28' Zn From Assumptions (A1), (A2), and (U2), we have E(5.) =0 for any
SEEV m s=T+1

s in the EV period, and E(nis) =0 for any s in the DV period. Next we define

. 2 - 4
- of 2z | e |

indicates a demeaned factor or demeaned residual, where average values of factors or residuals are taken over the

corresponding EV period. For example, fld =f, _é(f1 +f, +---+f)), de =f, _é(f2 +f, +- 1),

_ o2 _
and 8! =l — T (el + ) +ooek )

14



a (K+1) %1 vector, where the sample period (SP) is either IV or EV period and s belongs to SP,

P 2 i . . . N . A N
and el =e, —= > e, . This variable is used to decompose the estimation errors in B, and By, in
teSP

the convergence proofs. For example, B,, —B = [%Zgi,- : th ], where B = [b ,bN] is

telV teIV

a (K +1) x N matrix with a vector of ones and unconditional expected value of beta. Similarly,

we have B, —Bz[E Zg{g D 1. From Assumptions (A1), (A2), and (U2), we have

T teEV T teEV

E(Qis) = 0(K+1)><1-

With these new variables, we describe regularity assumptions as follows:

(A4) For any i and t, the elements in both b' and c' are uncorrelated with 51. The elements in

ZZ(CS) have finite variances. Given that

SO DKIEE S WICLIELRET )

E@;)=0 , apply Markov’s Law of Large Numbers | 225' -0 ,

i=1 teEV

N
Z D (b'8;) = 01y and —— ™ Z > (¢'8;) = 0., when both T and N approach to infinity.

2
TNT & i-1 teEV

(A5) For any i and t, the elements in both b' and c' are uncorrelated with git . The elements in

, , b' : ,
mzz ﬁzz FNEZCEN - LR
N
ZZ , ZZ c'(c))  have finite variances.  Given that
TN i=1 teEV i=1 telV
E(Qit)zo(ml)xl , by Markov’s Law of Large Numbers, —Z th = Opcapa

i=l teEV

Z th (K+l)><1 TN Z Z(b (Qt) ) —> O(K+l)><(K+l) ) Z Z(b (Qt) ) —> O (K+D)x(K+1)

i=1 telV i=l teEV i=1l telV

15



Z >(€'(6,)) = Oy .y and WZZ(C (1)) = Op.k.y When both T and N approach to

TN i=l teEV i=l telV

infinity.
(A6) For any i and t, the elements in both b' and c' are uncorrelated with the elements in Dit. The
T 1 N T N T
| (AL | 1\1
elements in rz Z”t : —Z Z(b (v)) , and —Z Z(C (v)) have finite
variances. Given that E(Dit)ZOLxl (Assumption (C)), by Markov’s Law of Large Numbers,
1 N T 1 N T o 1 N T o

I | (AL | 1\1
_Z Z”t =0, _Z Z b (Ut))_)O(K+1)xL and _Z Z ¢ (v)) >0, when
both T_ and N approach to infinity.

(A7) For any i and t, the elements in both b'and C'are uncorrelated with nit. The elements in

N T+T, N T+T, T+T,

Z Z(c'n ) have finite variances. Given that

w/NT Z_l:t;ﬁ\/NT Z_llt;fb )andw/ T, 554

N T+T,

E(Ttit) =0 by Markov’s Law of Large Numbers, —z Zﬂt -0
m i=1 t=T+l
N T+T, N T+T,
Z Z(b'n ) = 01y, and —Z Z m,) > 0., when both T_ and N approach to
m i=1 t=T+l m i=1 t=T+1
infinity.

(A8) When N—oo, %[B;C][B;c]'converges to an invertible matrix, denoted by { bt e
cb' cc

ey vy
which is EHci(bi)' X (Ci)'ﬂ'

With these assumptions, the convergence of the IV mean-estimator is established in the

bb’ bc'}

following Theorem.

16



Theorem G Suppose that Assumptions (Al), (A2), (A4)-(A8), (U2) and (C) in Appendices E, F,

and G hold, Then [FK] converges to (F,OM)' when N, T, T., and T approach to infinitygg

Proof: Note that

[, KT—(T,0,, ) = (ﬁ[ﬁ.v:éuﬁw;érj_ (ﬁ[ﬁ.v;él@zv)'j |

1 T+T,

where ‘:Ev [é;DV’ . E\'\/l] and i'.;{, ZSI T

seEV Tm s=T+1

We want to show that the above equation converges to 0(K+L+1)X1, which requires to show the

following three convergences:

1 . T+T, , 2 N
NBN(‘:DV) - Z Z [(b ZG )TEIJ mz ZG )3; j (K+1)X1’

m i=1l t=T+1 seIV =1 teEV seIV

(&DV) _—iTi ((C +_ ZU )ntJ N2T

m i=1 t=T+1 c s=T-T,+1

1 &K
_ ' += D08 | >0,

N
i=l teEV c s=T-T,+1

and (i[ﬁ.v;é][fzw;é]')—1 converges to | PP" bc’ -
N cb' cc’

Those three convergences can be shown as follows: From Assumption (A4),

2 & i
Z D (b'8;) > 0y.ppaand = > > 8, —>0, when N and T approach to infinity. From
TN i=1l teEV TN i=l teEV

Assumptions (Al) and (A2) in Appendix E, and Assumption (U2) in Appendix F,

= ng — 0(x.1)q for any asset i, as T approaches to infinity. Together with —Z > 5, >0,

T selV i=l teEV

s Recall that B,,, — B =[$Zg%,---, D'l and B=[b,---,b"].

telv teIV

17



this implies that when N and T approach to infinity at the same time,

NT Z Z((T D 63, ] —0 .14 - Therefore, when T and N approach to infinity,

i=1l teEV selV

93/ [CRES WY RS 3p VLR 3 (5L RUNN

i=1l teEV SeIV i=l teEV =1 teEV SeIV

N T+T, N T+T,

Similarly, from Assumption (A7), ﬁz D (b'my) = Oyyq @nd Z Zn —0 when

m i=l t=T+1l m i=1l t=T+l

2 i
both T, and N approach to infinity, and ?ng - 0(K+1)X1 for any asset i, as T approaches to

selV
1 N T+T,
infinity. Together with —Z Zn't — 0, this implies that when N, T, , and T approach to
m i=l t=T+

N T+T,
infinity at the same time, NLZ > ((T ng)nt] Ogiape - Thus, when T, T, and N

Tm i=1 t=T+1 selV

approach to infinity,

1 N T+T, N T+T, 1 N T+T,
L3y (<b' 2y )ntj L3 ) L3S [< zggnt] s
m i=1 t=T+1 S€|V m i=1 t=T+1 m i=1l t=T+1 S€|V

1~ C
Hence, NBN@DV) - 0(K+1)><1

1 —
Similarly, we can show that NC(&&,)'—) 0,4, with Assumptions (A4), (A7), (C), as well as
E(n})=0 and E(8;) =0.

Moreover,

RLI R D 3p W ISR 3 WCICI D3 ED U ES Y|

i=1l teEV i=l telV telv seEV

18



From Assumption (A5), T ZZ(b (1)) = O apny and —ZZ(b (61)) = Oenpuqieny

i=1 teEV i=l telV

when both T and N approach to infinity. From Assumptions (Al), (A2) and (U2),

2 .
—Zg't - O(K+1)X1 for any asset i, when T approaches to infinity. Also from Assumption (A5),
telV

2 & i
—Z Z(g's)' —> 0yk.1y When both T and N approach to infinity. The above two convergences

N i=1 seEV

imply that when both T and N approach to infinity, Z[ Z(gt)— D () j_>O(K+l)><(K+1)'

i=1 teIV S(—:EV

'—> bb* when both T and N approach

IVB EV

Therefore, with Assumption (A8), it is clear that%ﬁ
to infinity.

Similarly, %]}IVEA bc', —CB,,'—cb’, and %EE'_) cc' when both T and N approach to

1
N

infinity, with Assumptions (A5), (A6), (A8), (U2) and (C); hence, (%[1”3“,;6][1%9,;6]')*1

. 1 1. 1~
converges to | PP" be™I Together with —B,,(&5y)'— Oyye and —C(&py)' >0, , we
cb' cc’ N N

establish [IA“,1%]'—(1“,0M)'—>O(K+L+l)xl (i.e. [I',k] converges to (I',0,,)") when N, T, T, and T
approach to infinity. gg

In Theorem G, we assume that betas and characteristics can be any stationary and ergodic

processes; hence, Proposition 2 in the main text is a special case under AR(1) processes. The

regularity Assumptions (A4)-(A8) are satisfied when (a) Processes {Ei,t =1,-,T}, {Dit t=1--T}
and {Ui,t=1, -+, T} for each asset i are stationary and ergodic, (b) For all t, s and i, Sit,l)it and uit
are independent of f_ (factor in time s), sis (regression residuals in time s), unconditional means

of beta |3' and characteristic Ci, and Y (risk premium in time s), and the maximum values for

unconditional mean of beta and characteristic of all assets are finite. (c) In each time t, residuals in

19



[8%81\'] [Vivl\‘] and [UiutN] are asymptotically weakly correlated cross-sectionally

(Shanken,1992).
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