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Appendix E. Proof of Proposition 1 

        Let β be the matrix of true values of betas for all factors and assets. When there are K factors 

and N assets, it is a NK   matrix. Next, let IVβ̂  and EVβ̂  ( NK   matrix) be estimated betas, 

where “IV” subscript indicates the beta instruments and the “EV” subscript denotes the 

corresponding explanatory variables, respectively. We define IV and EV periods as separate 

periods of data used to estimate IV and EV betas, respectively, which can be either odd months or 

even months over a rolling estimation window. For example, if IV period includes odd months, 

EV period includes even months. The symbol “^” indicates an estimate. Define ]ˆ ;[ˆ
IVN1IV β1Β   

and ]ˆ ;[ˆ
EVN1EV β1Β  , where N11  denotes a N1  vector of ones1 and the operator “;” stacks the 

first row vector on top of the second matrix. Hence, IVΒ̂  and EVΒ̂  are N1)(K   matrices, each 

of which contains a vector of ones and K estimated factor loadings for N  assets. Similarly, define 

];[ N1 β1Β   as the matrix that contains a vector of ones and the matrix of true betas. Equivalently, 

we can write this matrix as N column vectors, i.e. ],,[ N1
bbΒ  , where ]β;;β;1[ i

K

i

1

i b  for 

asset i.2 

Assuming that we have T+1 months, we use T months to estimate IV and EV betas, and run 

a cross-sectional regression in time T+1. Define tr  as the N1  vector of excess returns in time 

                                                        
1 We will use this convention to define vectors or matrices of ones and zeros. 
2 Note that we use superscript i to indicate asset i in the Internet Appendix. 
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t.  Let tf denote the factor realization in time t; it is a K1 vectors. And let ]ε,,ε,ε[ N

t

2

t

1

tt ε  . 

It is a N1 vector of regression residuals in time t for N assets in Eq. (2) in the main text. Assume 

that factors have zero means (or they are demeaned factors). The first-stage time-series regression 

(Eq.(2) in the main text) can be written as ttt εβfαr   where ]α,,α[ N1 α , which is a  

N1  vector. 

Using OLS methods, we estimate IV and EV betas over the IV and EV periods, respectively. 

Assuming that T is even, the estimation error for IV beta can be expressed as follows:  

  IV

d

IV

d

IV

1d

IV

d

IVIV ''ˆ uΩFFFββ 


,                                                 

where ];;[ d

1-T

d

3

d

1

d

IV fffF   is a KT/2  matrix when  the IV period includes odd months, or 

];;;[ d

T

d

4

d

2

d

IV fffF   is a KT/2  matrix when the IV period includes even months. 

];;;[ d

1-T

d

3

d

1

d

IV εεεΩ   is a NT/2  matrix when the IV period includes odd months, or 

];;;[ d

T

d

4

d

2

d

IV εεεΩ   is a NT/2  matrix when the IV period includes even months. The 

superscript d indicates a demeaned factor or demeaned residual, where average values of factors 

or residuals are taken over the corresponding IV period. For example, 

)(
T

2
1-T311

d

1 fffff    and )(
T

2
T422

d

2 fffff   . From the above expression 

for ββ IV
ˆ , we obtain   ]'';[ˆ d

IV

d

IV

1d

IV

d

IVN1IV ΩFFF0ΒΒ


 . Similarly, it can be easily shown that 

the estimation error for EV beta is   EV

d

EV

d

EV

1d

EV

d

EVEV ''ˆ uΩFFFββ 


, leading to 

  ]'';[ˆ d

EV

d

EV

1d

EV

d

EVN1EV ΩFFF0ΒΒ


 , where 
d

EVF  and 
d

EVΩ are similarly defined as 
d

IVF  and 
d

IVΩ , 

respectively. 

The model for expected returns follows Eq. (1) in the main text. If riskless borrowing and 

lending are allowed, then the zero-beta asset earns the risk-free rate and its excess return is zero, 

i.e. in Eq. (1), 0γ0  . Thus, the cross-sectional regression model with 0γ0   and ex-post risk 
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premium (defined as γf 1T ) can be written as 1T1T1T )(   εβγfr , where gamma is a 1 x K 

vector of ex-ante risk premium.3 We rewrite it to  

1TEV1TEV1T1T )ˆ)((ˆ)(   εββγfβγfr .                                   

Let 1TEV1T1TEV1T

EV

1T )()ˆ)((   εuγfεββγfξ , and let ),0( 1T fγΓ , a 

1)(K1   vector that contains the ex-post risk premiums. The assets' returns in time T+1 can be 

written as  

                                            
EV

1TEV1T
ˆ

  ξΒΓr .               

       We then propose the following IV estimator for ex-post risk premium in month T+1:  

                                          .)'ˆ()'ˆˆ(='ˆ
1TIV

1

EVIV1T 



 rΒΒΒΓ                     (Eq. (4) in the main text)           

 

In order to show the N-consistency of the IV estimator (which is 1T
ˆ

Γ ), we need to make the 

following regularity assumptions:  

(A1) The residual process }T,1,t,{ t ε , where ]ε,,ε,ε[ N

t

2

t

1

tt ε , is stationary with zero mean 

and finite fourth moments. In addition, 
i

tε  and 
j

sε  are uncorrelated as long as ts  . Moreover, for 

any ts  , )εεεε(
N

1 N

s

N

t

1

s

1

t   have finite variances. 

                                                        
3Rewriting Eq. (1) (with 0γ 0  ) and Eq. (2) in the main text in matrix notations, we have γβr  )( 1TE  denoted as 

Eq. (1’) and 
1T1T1T   εβfαr  denoted as Eq. (2’)  where ]γ,,γ[ K1 γ , ]α,,α[ N1 α ,  and 

]ε,,ε[ N

1T

1

1T1T   ε . With the assumptions that 0)( t fE  and 0)( t εE , taking the expectation of Eq. (2’) 

produces αr  )( 1TE   denoted as Eq.(2’’).  Combining Eqs. (1’), (2’), and (2”) gives us 

1T1T1T )(   εβγfr .  
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(A2) The factor process }T,1,t,{ t f  is stationary with finite fourth moments, and is 

independent of the residual process }T,1,t,{ t ε .  

  (A3) For any i and t, the elements in i
b  and 

i

tε  are uncorrelated. For any t, the elements in 

)εε(
N

1 N

t

N1

t

1
bb  . Moreover, when N∞, N/'ΒΒ  converges to an invertible matrix 'bb  

( ))'(( ii
bbE ).  

Note that the Assumptions (A1) and (A3) are satisfied if in each time t, the residuals in ]ε,,[ε N

t

1

t 

are asymptotically weakly correlated (Shanken,1992), regression residuals have finite fourth 

moments, and the maximum values of betas across all stocks are finite. 

         With the Assumptions (A1) to (A3), N-consistency is presented in Theorem E. 

Theorem E (Consistency, Proposition 1 in the main text) Assuming (A1) to (A3),  the estimated 

risk premium )'ˆ
N

1
()'ˆˆ

N

1
('ˆ

1TIV

1

EVIV1T 



  rΒΒΒΓ  converges to 'Γ  when N approaches to infinity.  

Proof of the consistency: Note that 

 .)'ˆ
N

1
()'ˆˆ

N

1
(=''ˆ EV

1TIV

1

EVIV1T 



  ξΒΒΒΓΓ  

To show the consistency as N goes to infinity, we need to prove the following two convergences:

  11)(K

N

1i

iEV,

1T

id,

IV

d

IV

1d

IV

d

IV

iEV

1TIV ξ]))'('';0[(
N

1
='ˆ

N

1








  0εFFFbξΒ  and 

   

    .')']))'('';0[])()'('';0[((
N

1

'])'';[])('';[(
N

1
'ˆˆ

N

1

N

1

id,

EV

d

EV

1d

EV

d

EV

iid,

IV

d

IV

1d

IV

d

IV

i

d

EV

d

EV

1d

EV

d

EVN1

d

IV

d

IV

1d

IV

d

IVN1EVIV

bbεFFFbεFFFb

ΩFFF0ΒΩFFF0ΒΒΒ


















i

  

Here,
id,

IVε  is a T/21  vector that contains the demeaned residuals for asset i in the IV period, and 

id,

EVε  is a  T/21  vector that contains the demeaned residuals for asset i in the EV period. For 

example, if the IV period includes odd months, and the EV period includes even months, 

]ε,,ε,ε[ id,

1-T

id,

3

id,

1

id,

IV ε  and ]ε,,ε,ε[ id,

T

id,

4

id,

2

id,

EV ε where )εε(ε
T

2
εε i

1T

i

3

i

1

i

t

id,

t    
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when t is odd, and )εε(ε
T

2
εε i

T

i

4

i

2

i

t

id,

t    when t is even. Moreover, 
EV

1Tξ , a N1 vector, 

can be written as ]ξ,,ξ[ NEV,

1T

EV,1

1T   . 

       Under Assumptions (A1) to (A3), we now have the following observations: 

I. For any i, 11)(K

iEV,

1T

i =)ξ(  0bE ,   1)(K1)(K

id,

IV

d

IV

1d

IV

d

IV

i =)]')'('';0[( 


0εFFFbE , 

  1)(K1)(K

id,

EV

d

EV

1d

EV

d

EV

i =)]')'('';0([( 


0εFFFbE , 

    1)(K1)(K

id,

EV

d

EV

1d

EV

d

EV

id,

IV

d

IV

1d

IV

d

IV =)]')'('';0[])'('';0[( 


0εFFFεFFFE ,  and 

  11)(K

EV,id,

IV

d

IV

1d

IV

d

IV =)ξ])'('';0[( 


0εFFF

i

1TE . 

Since the elements in )εε(
N

1 N

t

N1

t

1
bb  have finite variances for any time t 

(Assumption (A3)), it is clear that the elements in )ξξ(
N

1 NEV,

1T

NEV,1

1T

1

  bb    have finite 

variances. For the same reason, the elements in

    )]')'('';0['])'('';0[(
N

1 Nd,

IV

d

IV

1d

IV

d

IV

Nd,1

IV

d

IV

1d

IV

d

IV

1
εFFFbεFFFb


  have finite variances, and 

the elements in     )]')'('';0['])'('';0[(
N

1 Nd,

EV

d

EV

1d

EV

d

EV

Nd,1

EV

d

EV

1d

EV

d

EV

1
εFFFbεFFFb


  have 

finite variances. 

II. If regression residuals have finite fouth moments (Assumption (A1)), and 

)εεεε(
N

1 N

s

N

t

1

s

1

t   have finite variances for any ts   (Assumption (A1)),  then for any i, 

the elements in  





N

1i

iEV,

1T

id,

IV

d

IV

1d

IV

d

IV )ξ])'('';0([
N

1
εFFF  have finite variances, and the elements 

in    



N

1i

id,

EV

d

EV

1d

EV

d

EV

id,

IV

d

IV

1d

IV

d

IV )'])'('';0][)'('';0[(
N

1
εFFFεFFF  also have finite variances. 

With the observations I, II, and III, apply Markov’s Law of Large Numbers, 
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


 
N

1i

11)(K

iEV,

1T

iξ
N

1
0b  

 







N

1i

11)(K

iEV,

1T

id,

IV

d

IV

1d

IV

d

IV )ξ])'('';0([
N

1
0εFFF  

  1)(K1)(K

N

1i

iid,

IV

d

IV

1d

IV

d

IV ))']()'('';0[(
N

1





 0bεFFF  

  1)(K1)(K

N

1i

id,

EV

d

EV

1d

EV

d

EV

i )'])'('';0[(
N

1





 0εFFFb  

    1)(K1)(K

N

1i

id,

EV

d

EV

1d

EV

d

EV

id,

IV

d

IV

1d

IV

d

IV )'])'('';0][)'('';0[(
N

1





 0εFFFεFFF  

 

From Assumption (A3), N/'ΒΒ  converges to 'bb . Together with the equations above, we have 

  11)(K

N

1i

iEV,

1T

id,

IV

d

IV

1d

IV

d

IV

iEV

1TIV )ξ])()'('';0[(
N

1
='ˆ

N

1








  0εFFFbξΒ , and  

   

    .')']))'('';0[])()'('';0[((
N

1

'])'';[])('';[(
N

1
'ˆˆ

N

1

N

1

id,

EV

d

EV

1d

EV

d

EV

iid,

IV

d

IV

1d

IV

d

IV

i

d

EV

d

EV

1d

EV

d

EVN1

d

IV

d

IV

1d

IV

d

IVN1EVIV

bbεFFFbεFFFb

ΩFFF0ΒΩFFF0ΒΒΒ


















i

▄ 

      We also derive the conditional and unconditional asymptotic distributions of the IV estimator 

as N goes to infinity. These theorems and proofs are available from the authors upon request. 

 

Appendix F. Consistency of IV estimator with time-varying betas  

 

         Theorem E requires that betas and true risk premiums are constant. In this section, we relax 

this assumption (but still keep Assumptions (A1) and (A2) in Appendix E).  With the assumption 

that riskless borrowing and lending are allowed, Eq. (1) in the main text with time-varying betas 

and risk premiums can be written as: 



 7 

.γβ)β,,β,γ,,γ|r( kt,

K

1k

i

kt,

i

Kt,

i

t,1Kt,t,1

i

t 


E 4 

Here 
i

kt,β  is the beta of factor k for asset i in time t, and 
kt,γ  is the risk premium for factor k in time 

t.  Similarly, the first-stage time-series regression can be written as: 
i

ttk,

K

1k

i

kt,

ii

t εfβαr  


. Let 

i

kt,

i

k

i

kt, uββ   where 
i

kβ  is the unconditional mean of the beta of factor k for asset i, and 
i

kt,u  is 

the shock in beta in time t.   

        We can rewrite the above equations in vector and matrix notations. Assume that the true risk 

premium tγ , a K1  vector, is also time-varying and satisfies the following assumption: 

Assumption (G):  For all t, s and i,  tγ  is independent of the regression residual 
i

sε .  

Let 
i

tβ  , a 1K   vector, be the betas of K factors for asset i in time t, and 
i
β be its unconditional 

mean. Let ]α,,α[ N1 α .  In addition, Let 
i

t

ii

t uββ  , where the time t shock
i

tu  is a 1K   vector. 

Denote ],,[ N1
βββ  , ],,[ N

t

1

tt βββ   and ],,[ N

t

1

tt uuu  . The asset pricing model in Eq. 

(1) in the main text with time-varying betas and risk premium can be written as 

1T1T1T1T1T ),|(   βγβγrE  (with 0γ0  ), and the first-stage time-series regression can be 

written as tttt εβfαr  . With the similar derivation in Appendix E, we can show that the 

cross-sectional regression model can be written as 1T1T1T1T1T1T1T )),|((   νββγfγfr E , 

where 1T1T1T1T1T1T1T1T )),|((   uβγfγfεν E . 

Define ];[ N1 β1Β  , ]ˆ ;[ˆ
IVN1IV β1Β   and ]ˆ ;[ˆ

EVN1EV β1Β   where IVβ̂  and EVβ̂  are the 

estimated betas in the IV and EV periods, respectively. The first-stage time-series regression can 

be written as ttt eβfαr   where tttt ufεe  . The estimation errors for IV and EV betas are:                     

                                                        
4 Note that we use superscript i to indicate asset i in the Internet Appendix. 
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                                             d

IV

d

IV

1d

IV

d

IVIV ''ˆ EFFFββ


 , 

                                              d

EV

d

EV

1d

EV

d

EVEV ''ˆ EFFFββ


 , 

respectively, where d

IVE  ( d

EVE ) is defined similarly to 
d

IVΩ  (
d

EVΩ ) in Appendix E, by replacing tε  

with te .    

       Denote 1TΓ , a 1)(K1   vector, as the ex-post risk premiums in time T+1 (defined as 

)),|(,0( 1T1T1T1T1T1T   βγfγfΓ E ). Following the same derivation in Appendix E, 

the cross-sectional regression model can be written as  

                                            
EV

EV1T1T 1T

ˆ


  ξΒΓr ,  

where 1TEV1T1T1T1T1T

EV )ˆ))(,|((
1T  


νβββγfγfξ E . 

The  IV estimator is   .)'ˆ()'ˆˆ(='ˆ
1TIV

1

EVIV1T 



 rΒΒΒΓ   We can show two types of consistency of this 

estimator, with different assumptions on the dynamcs of 
i

tu . 

Assumption (U1): For all t, s and i, 
i

tu  is independent of sf  (factor in time s), 
i

sε  (regression 

residuals in time s), unconditional mean of beta 
i

β  and sγ  (risk premium in time s). It also has 

zero mean and finite fourth moment. In addition, 
i

tu  and 
j

su  are uncorrelated as long as ts  . 

Moreover, for each asset i, the stochastic process }T,1,t,{ i

t u  is stationary. Moreover, for any 

ts  , elements in ))'()'((
N

1 N

s

N

t

1

s

1

t uuuu  and )εε(
N

1 N

s

N

t

1

s

1

t uu   have finite variances. 

Assumption (U2):  For all t, s and i, 
i

tu  is independent of sf  (factor in time s), 
i

sε  (regression 

residuals in time s), unconditional mean of beta 
i

β  and sγ  (risk premium in time s). It also has 

zero mean and finite fourth moments. In addition, for each asset i, the stochastic process 

}T,1,t,{ i

t u  is stationary and ergodic.  
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       The key difference between those two assumptions is the autocorrelation of }T,1,t,{ i

t u  

process. Assumption (U1) imposes no autocorrelation, while (U2) relaxes this assumption. In 

addition, since 
i

tu  is independent of 1Tf , we have )|(),|( 1T1T1T1T1T   γfβγf EE . Therefore, 

1T1T1T1T1T1TEV1T1T1T1T

EV ))|(()ˆ))(|((
1T  


uγfγfεββγfγfξ EE  and 

))|(,0( 1T1T1T1T1T   γfγfΓ E . Since )|( 1T1T1T1T   γfγf E  is independent of 

i

tu and 
i

tε for any t and i (Assumptions (G) and (U1)), we can show that 
EV

1T
ξ  has zero mean.  

        We also impose the following assumption on 
i

tu  process, 
i

tε  and matrix B (which can be 

written as ],,[ N1
bb   as in Appendix E). 

Assumption (B): The elements in ))'(u)'(u(
N

1 N

t

N1

t

1
bb   and )εε(

N

1 N

t

N1

t

1
bb   have 

finite variances for any t, and when N∞, N/'ΒΒ  converges to an invertible matrix 'bb  

( ))'(( ii
bbE ). In addition, for any i and t, the elements in

i
b and 

i

tε  are uncorrelated. 

        We write 
EV

1T
ξ  ( N1  vector), as ]ξ,,ξ[ NEV,

1T

EV,1

1T   . Assumption (B) implies that the elements 

in )(
N

1 NEV,NEV,11

1T1T 
 ξbξb   have finite variances, since iEV,

1T
ξ  is a linear combination of 

i

tu ’s 

and 
i

tε ’s. Assumptions (U1) and (B) imply that iEV,

1T
ξ  and 

i
b  are uncorrelated, i.e. 

11)(K

iEV,i )(
1T 


0ξbE . 

        With the assumptions above, we state the following Theorem F: 

Theorem F  (1) (N-Consistency) Assuming (A1), (A2),  (G), (U1) and (B),  the estimated risk 

premium )'ˆ
N

1
()'ˆˆ

N

1
('ˆ

1TIV

1

EVIV1T 



  rΒΒΒΓ  converges to '1TΓ  when N approaches to infinity. 
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(2) (Sequential consistency) Assuming (A1), (A2), (U2) and (B),  the estimated risk premium 

)'ˆ
N

1
()'ˆˆ

N

1
('ˆ

1TIV

1

EVIV1T 



  rΒΒΒΓ  converges to '1TΓ  when we take a probability limit as T 

approaches to infinity first, and then take a probability limit as N approaches to infinity. 

Proof of (1): With the assumptions above, the proof will be exactly the same as the proof for 

Theorem E, by replacing 
d

IVΩ  (
d

EVΩ ) with d

IVE  ( d

EVE ), and tε  with te ( ttt ufε  ). 

Proof of (2):  Similarly to the proof for Theorem E, 

                                       .)'ˆ
N

1
()'ˆˆ

N

1
(=''ˆ EV

IV

1

EVIV1T1T 1T



  ξΒΒΒΓΓ   

We have shown that 

                                               d

IV

d

IV

1d

IV

d

IVIV ''ˆ EFFFββ


 , 

                                              d

EV

d

EV

1d

EV

d

EVEV ''ˆ EFFFββ


 . 

Let ]e,,e[ N

t

1

tt e . Since 
i

te  is a linear combination of 
i

tu  and 
i

tε , from Assumptions (A1), (A2) 

and (U2), it is clear that the stochastic process }T,1,t,e{ i

t   is stationary and ergodic with zero 

mean and finite fourth moment, and for any i, 
i

te  is independent of factors. Taking a probability 

limit as T approaches to infinity, ΒΒ IV
ˆ , ΒΒ IV

ˆ and 1T

EV

1T 


νξ  following the Markov’s law 

of large number. Hence, 

)'
N

1
()'

N

1
()'ˆ

N

1
()'ˆˆ

N

1
( 1T

1EV

IV

1

EVIV 1T 

 


ΒνΒΒξΒΒΒ . 

Next, since 1Tν  is a linear combination of tu  and tε , from Assumptions (B) and (U2),

11)(k1T )'(   0ΒνE , and the elements in )vv(
N

1 N

1T

N1

1T

1

  bb   have finite variances when 

N∞. In addition, from Assumption (B), ')'
N

1
( bbΒΒ  as N appraoches to infinity. Apply 
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Markov’s law of large numbers, 
11)(k1T

1 )'
N

1
()'

N

1
( 

  0ΒνΒΒ  when N∞.  Therefore, 

11)(k

EV

IV

1

EVIV )'ˆ
N

1
()'ˆˆ

N

1
(

1T 

 


0ξΒΒΒ   (i.e. 'ˆ
1TΓ  converges to '1TΓ ) when we take a probability 

limit as T approaches to infinity first, and then take a probability limit as N approaches to infinity. 

▄ 

 

 

Appendix G. Time-varying characteristics  

         In this section, we incorpate stock characteristics into the cross-sectional regression: i.e. in 

the second-stage regression, the independent variables are estimated betas as well as characteristics 

of stocks. We also assume that both estimated betas and characteristics are proxies for the true 

factor loading (true betas), and they are correlated cross-sectionally. Thus, characteristics are used 

both as instruments for beta estimates and as control variables. We propose a new IV estimator: 

the IV mean-estimator, and prove its convergence to the ex-post risk premium as the dimensions 

of cross-section and time-series grow indefinitely. The estimator in Proposition 2 in the main text 

is a special case of the IV mean-estimator proposed in this Appendix.  

        The dependent variable of the IV mean-estimator in the second-stage cross-sectional 

regression is the average return 



DVt

t

m

DV
T

1
rr  over the months not used to construct IVβ̂ and 

EVβ̂ (we call them the dependent variable period or the DV period, and assume that the DV period 

has mT  months). Without loss of generality, we assume that IV and EV betas are constructed using 

observations from months 1 to T, and the DV period  has observations from months 1T   to 

mTT  . 

         Following the similar derivations in Appendices E and F, we can show that for any t in the 

DV period, the asset return with time-varying beta and true risk premium can be written as

tttttttt )),|(( εββγfγfr  E . From Assumption (U2), we have )|(),|( ttttt γfβγf EE  , 

leading to ttttttt ))|(( εβγfγfr  E .  
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        The cross-sectional regression model of regressing the average return over the DV period on 

the estimated beta over the EV period can be written as DVEVDV
ˆ ξΒΓr  , where  Γ  is defined 

as )))|((
T

1
,0(

DVt

tttt

m




 γfγf E , and the residual DVξ  ( N1 )  takes the following form: 

    DV

DVt

DVttttt

m

EVDV

DVt

tttt

m

DV )))(|((
T

1
)ˆ())|((

T

1
εββγfγfββγfγfξ 








 



EE   

where 



DVt

t

m

DV
T

1
ββ and 




DVt

t

m

DV
T

1
εε .   

        Recall that tt uββ  , where the shock in beta is ],,[ N

t

1

tt uuu  . 5  Moreover, let





DVs

i

s

m

i

t

id,

t
T

1
uuu , and ],,[ Nd,

t

d,1

t

d

t uuu  , which is demeaned residual in time t, and a NK   

matrix. Decomposing tβ  into its two components, i.e., β  and tu , the above regression residual 

DVξ  can be re-written as 

 

  DV

DVt

d

ttttt

m

DVt

t

mDVt

tttt

m

EV

DVt

tttt

m

DV

))|((
T

1

T

1
))|((

T

1
)ˆ())|((

T

1

εuγfγf

uγfγfββγfγfξ






































E

EE

,  

   Denote 
i

tc  as a vector of characteristics for asset i in time t. Assume that there are L 

characteristics, so 
i

tc  is a 1L  vector. Similarly to time-varying betas, we assume that the 

characteristics can be decomposed into the two parts: 
i

t

ii

t υcc  , where 
i

c  is the unconditional 

expected value of characteristic for asset i, and 
i

tυ  is the shock in characteristic in time t. We make 

the following assumption on 
i

tυ . 

                                                        
5 Note that we use superscript i to indicate asset i in the Internet Appendix. 
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Assumption (C): For each asset i, the process }T,1,t,{ i

t υ  is stationary and ergodic with zero 

mean and finite fourth moments.  

In addition, denote ],,[ N1
ccC  , an NL  matrix, as the unconditional expected value of 

characteristic. Take the average of characteristic from 1TT c   to T : 





1T

0t

t-T

c

c

T

1
CC , with 

],,[ N

t

1

tt ccC   an NL  matrix. 6  With characteristics as control variables and additional 

instruments for beta estimates, we run the following cross-sectional regression: 

κ

DVEVDV
ˆ ξCκΒΓr  , where the slope coefficient of characteristics, denoted by κ , is an 

L1 vector. When characteristics play roles of proxies for the true factor loadings, i.e. they do 

not affect the cross-section of expected returns by themselves, the true value of κ is zero if the 

beta estimates are included in the regression. Under this null hypothesis, in above regression, 

DV

κ

DV ξξ  , where DVξ is the error in the regression without characteristics. The estimated slope 

coefficents of our cross-sectional IV regression are given as 

         




















DVt

t

m

IV

1

EVIV '
T

1
];ˆ[

N

1
'];ˆ][;ˆ[

N

1
=]'ˆ,ˆ[ rCΒCΒCΒκΓ , 

where ];ˆ[ IV CΒ  (which is a N1)L(K   matrix) stacks IVΒ̂  over C . 

        In order to show the convergences of the estimated slope coefficients above, we need to 

specify the regularity assumptions. To simplify the notations in the assumptions, we define the 

following two variables: 

                           



































 )e'('
T

2
))|((

T

1
δ id,

s

d

s

1

d

EV

d

EV

DVt

tttt

m

i

s fFFγfγf E , 7  

                                                        
6 In proposition 2, we assume that TTc  , but here we relax this assumption. 

7 Assuming that T is even, ];;[ d

1-T

d

3

d

1

d

EV fffF   is a KT/2  matrix when the EV period includes odd months, 

or ];;;[ d

T

d

4

d

2

d

EV fffF   is a KT/2  matrix when the EV period includes even months. The superscript d 
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for any s in the EV period, where 
i

ss

i

s

i

s εe uf , and 



EVt

i

t

i

s

id,

s e
T

2
ee . Hence 

)ˆ())|((
T

1
]δ

T

2
,,δ

T

2
[ EV

DVt

tttt

mEVs EVs

N

s

1

s ββγfγf 







  

 

E . 

                   
i

s

id,

sssss

i

s

DVt

tttt

m

i

s ε))|(())|((
T

1
π 








 



uγfγfuγfγf EE , 

for any s in the DV period, leading to  

                    

  DV

DVs

d

sssss

mDVs

s

mDVt

tttt

m

TT

1Ts

N

s

m

TT

1Ts

1

s

m

))|((
T

1

T

1
))|((

T

1

]π
T

1
,,π

T

1
[

mm

εuγfγfuγfγf 

































EE



.  

Therefore, these two variables 
i

sδ  and 
i

sπ  can be used to decompose the regression residual 
κ

DVξ  

in the convergence proofs below. More specifically, define ]ξ,,ξ[ Nκ,

DV

κ,1

DV

κ

DV ξ , then 







mTT

1Ts

i

s

mEVs

i

s

iκ,

DV π
T

1
δ

T

2
ξ . From Assumptions (A1), (A2), and (U2), we have 0)(δi

s E  for any 

s in the EV period, and 0)(πi

s E  for any s in the DV period. Next we define  

                           























)e'('
T

2
;0 id,

s

d

s

1

d

SP

d

SP

i

s fFFς ,  

                                                        
indicates a demeaned factor or demeaned residual, where average values of factors or residuals are taken over the 

corresponding EV period. For example, )(
T

2
1-T311

d

1 fffff   , )(
T

2
T422

d

2 fffff   , 

and )εε(ε
T

2
εε i

1T

i

3

i

1

i

t

id,

t   . 
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a 11)(K   vector, where the sample period (SP) is either IV or EV period and s belongs to SP, 

and 



SPt

i

t

i

s

id,

s e
T

2
ee . This variable is used to decompose the estimation errors in IVΒ̂ and EVΒ̂ in 

the convergence proofs. For example,  ]
T

2
,,

T

2
[ˆ

IVt

N

t

IVt

1

tIV 


 ςςBΒ  , where ],,[ N1
bbΒ   is 

a N1)(K  matrix with a vector of ones and unconditional expected value of beta. Similarly, 

we have ]
T

2
,,

T

2
[ˆ

EVt

N

t

EVt

1

tEV 


 ςςBΒ  . From Assumptions (A1), (A2), and (U2), we have

11)(K

i

s )(  0ςE . 

       With these new variables, we describe regularity assumptions as follows: 

(A4) For any i and t, the elements in both 
i

b and 
i

c are uncorrelated with 
i

tδ . The elements in 


 

N

1i EVt

i

tδ
TN

1
, )δ(

TN

1 N

1i EVt

i

t

i
 

b  and )δ(
TN

1 N

1i EVt

i

t

i
 

c  have finite variances. Given that 

0)(δi

t E , apply Markov’s Law of Large Numbers , 0δ
TN

2 N

1i EVt

i

t 
 

, 

11)(K

N

1i EVt

i

t

i )δ(
TN

2


 

 0b  and 1L

N

1i EVt

i

t

i )δ(
TN

2


 

 0c  when both T and N approach to infinity.  

(A5) For any i and t, the elements in both 
i

b and 
i

c  are uncorrelated with 
i

tς .  The elements in 


 

N

1i EVt

i

t
TN

1
ς , 

 

N

1i IVt

i

t
TN

1
ς , )')((

TN

1 N

1i EVt

i

t

i
 

ςb , ))'((
TN

1 N

1i IVt

i

t

i
 

ςb ,

))'((
TN

1 N

1i EVt

i

t

i
 

ςc , and ))'((
TN

1 N

1i IVt

i

t

i
 

ςc   have finite variances.  Given that 

11)(K

i

t )(  0ςE , by Markov’s Law of Large Numbers, 11)(K

N

1i EVt

i

t
TN

2


 

 0ς , 

11)(K

N

1i IVt

i

t
TN

2


 

 0ς  , 1)(K1)(K

N

1i EVt

i

t

i )')((
TN

2


 

 0ςb , 1)(K1)(K

N

1i IVt

i

t

i )')((
TN

2


 

 0ςb , 
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1)(KL

N

1i EVt

i

t

i ))'((
TN

2


 

 0ςc  and 1)(KL

N

1i IVt

i

t

i ))'((
TN

2


 

 0ςc  when both T and N approach to 

infinity. 

(A6) For any i and t, the elements in both
i

b and 
i

c are uncorrelated with the elements in
i

tυ .  The 

elements in  
 

N

1i

T

1T-Tt

i

t

c c
NT

1
υ  , ))'((

NT

1 N

1i

T

1T-Tt

i

t

i

c c

 
 

υb , and ))'((
NT

1 N

1i

T

1T-Tt

i

t

i

c c

 
 

υc  have finite 

variances. Given that 1L

i

t )(  0υE (Assumption (C)), by Markov’s Law of Large Numbers, 

1L

N

1i

T

1T-Tt

i

t

c c
NT

1


 

  0υ , L1)(K

N

1i

T

1T-Tt

i

t

i

c

))'((
NT

1

c



 

  0υb  and LL

N

1i

T

1T-Tt

i

t

i

c

))'((
NT

1

c



 

  0υc  when 

both cT  and N approach to infinity. 

(A7) For any i and t, the elements in both 
i

b and 
i

c are uncorrelated with 
i

tπ .  The elements in 

 






N

1i

TT

1Tt 

i

t

m

m

π
NT

1
,  







N

1i

TT

1Tt 

i

t

i

m

m

)π(
NT

1
b  and  







N

1i

TT

1Tt 

i

t

i

m

m

)π(
NT

1
c  have finite variances. Given that 

0)(πi

t E ,  by Markov’s Law of Large Numbers, 0π
NT

1 N

1i

TT

1Tt 

i

t

m

m

 






, 

11)(K

N

1i

TT

1Tt 

i

t

i

m

m

)π(
NT

1








  0b , and  1L

N

1i

TT

1Tt 

i

t

i

m

m

)π(
NT

1








  0c  when both 
mT  and N approach to 

infinity. 

(A8) When N∞, ]';][;[
N

1
CΒCΒ converges to an invertible matrix, denoted by 









cc'cb'

bc'bb'
, 

which is 




















'cc'bc

'cb'bb

)()(

)()(
iiii

iiii

E . 

        With these assumptions, the convergence of the IV mean-estimator is established in the 

following Theorem. 
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Theorem G Suppose that Assumptions (A1), (A2), (A4)-(A8), (U2) and (C) in Appendices E, F, 

and G hold, Then ]'ˆ,ˆ[ κΓ  converges to )',( L10Γ   when N, mT , cT , and T approach to infinity▄  

Proof: Note that 





















 )'](;ˆ[
N

1
'];ˆ][;ˆ[

N

1
=)',(]'ˆ,ˆ[ κ

DVIV

1

EVIVL1 ξCΒCΒCΒ0ΓκΓ  , 

where ]ξ,,ξ[ Nκ,

DV

κ,1

DV

κ

DV ξ  and 





mTT

1Ts

i

s

mEVs

i

s

iκ,

DV π
T

1
δ

T

2
ξ . 

We want to show that the above equation converges to 11)L(K 0 , which requires to show the 

following three convergences: 

   
 







 




















N

1i EVt

11)(K

i

t

IVs

i

s

i
N

1i

TT

1Tt 

i

t

IVs

i

s

i

m

κ

DVIV δ)
T

2
(

NT

2
π)

T

2
(

NT

1
)'(ˆ

N

1 m

0ςbςbξΒ ,8 

  




 

















N

1i

TT

1Tt 

i

t

T

1T-Ts

i

s

c

i

m

κ

DV

m

c

)π
T

1
(

NT

1
)'(

N

1
υcξC  

 





















N

1i EVt

1L

i

t

T

1T-Ts

i

s

c

i δ)
T

1
(

NT

2

c

0υc , 

and 1

EVIV )'];ˆ][;ˆ[
N

1
( 

CΒCΒ  converges to 
1










cc'cb'

bc'bb' . 

Those three convergences can be shown as follows: From Assumption (A4),

11)(K

N

1i EVt

i

t

i )δ(
TN

2


 

 0b and 0δ
TN

2 N

1i EVt

i

t 
 

, when N and T approach to infinity. From 

Assumptions (A1) and (A2) in Appendix E, and Assumption (U2) in Appendix F, 

11)K(

IVs

i

s
T

2




 0ς  for any asset i,  as T approaches to infinity. Together with 0δ
TN

2 N

1i EVt

i

t 
 

, 

                                                        

8 Recall that ]
T

2
,,

T

2
[ˆ

IVt

N

t

IVt

1

tIV 


 ςςBΒ  , and ],,[ N1
bbΒ  . 
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this implies that when N and T approach to infinity at the same time, 

11)(K

N

1i EVt

i

t

IVs

i

s δ)
T

2
(

NT

2


  

  







0ς . Therefore, when T and N approach to infinity, 

11)(K

N

1i EVt

i

t

IVs

i

s

N

1i EVt

i

t

i
N

1i EVt

i

t

IVs

i

s

i )δ
T

2
(

NT

2
)δ(

NT

2
δ)

T

2
(

NT

2


     

   
















 0ςbςb . 

Similarly, from Assumption (A7), 11)(K

N

1i

TT

1Tt 

i

t

i

m

m

)π(
NT

1








  0b  and 0π
NT

1 N

1i

TT

1Tt 

i

t

m

m

 






 when 

both 
mT  and N approach to infinity,  and 11)K(

IVs

i

s
T

2




 0ς  for any asset i, as T approaches to 

infinity. Together with 0π
NT

1 N

1i

TT

1Tt 

i

t

m

m

 






, this implies that when N, 
mT , and T approach to 

infinity at the same time, 11)(K

N

1i

TT

1Tt 

i

t

IVs

i

s

m

m

)π
T

2
(

NT

1






 









   0ς . Thus, when T , 

mT  and N 

approach to infinity, 

                                                      

  11)(K

N

1i

TT

1Tt 

i

t

IVs

i

s

m

N

1i

TT

1Tt 

i

t

i

m

N

1i

TT

1Tt 

i

t

IVs

i

s

i

m

mmm

π)
T

2
(

NT

1
π

NT

1
π)

T

2
(

NT

1






 







 


















       0ςbςb . 

Hence,  11)(K

κ

DVIV )'(ˆ
N

1
 0ξΒ  

Similarly, we can show that 1L

κ

DV )'(
N

1
 0ξC  with Assumptions (A4), (A7), (C), as well as 

0)(πi

t E  and 0)(δi

t E . 

         Moreover, 

 
   











N

1i EVs

i

s

IVt

i

t

N

1i IVt

i

t

i
N

1i EVt

i

t

i

EVIV ')(
T

2
)(

T

2

N

1
)'')((

TN

2
)')((

TN

2
'

N

1
'ˆˆ

N

1
ςςςbςbΒΒΒΒ .  
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From Assumption (A5), 1)(K1)(K

N

1i EVt

i

t

i )')((
TN

2


 

 0ςb  and 1)(K1)(K

N

1i IVt

i

t

i ))'((
TN

2


 

 0ςb  

when both T and N approach to infinity. From Assumptions (A1), (A2) and (U2), 

11)K(

IVt

i

t
T

2




 0ς  for any asset i, when T approaches to infinity. Also from Assumption (A5),

1)(K1

N

1i EVs

i

s )'(
TN

2


 

 0ς  when both T and N approach to infinity. The above two convergences 

imply that when both T and N approach to infinity, 1)(K1)(K

N

1i EVs

i

s

IVt

i

t ')(
T

2
)(

T

2

N

1


 









  0ςς . 

Therefore, with Assumption (A8), it is clear that bb'ΒΒ 'ˆˆ
N

1
EVIV

 when both T and N approach 

to infinity.  

Similarly, ,'ˆ
N

1
IV bc'CΒ   ,'ˆ

N

1
EV cb'BC  and cc'CC '

N

1  when both T and N approach to 

infinity, with Assumptions (A5), (A6), (A8), (U2) and (C); hence, 1

EVIV )'];ˆ][;ˆ[
N

1
( 

CΒCΒ  

converges to 
1










cc'cb'

bc'bb' . Together with 11)(K

κ

DVIV )'(ˆ
N

1
 0ξΒ  and 1L

κ

DV )'(
N

1
 0ξC , we 

establish 11)L(KL1 )',(]'ˆ,ˆ[   00ΓκΓ  (i.e. ]'ˆ,ˆ[ κΓ  converges to )',( L10Γ ) when N, mT , cT , and T 

approach to infinity. ▄ 

In Theorem G, we assume that betas and characteristics can be any stationary and ergodic 

processes; hence, Proposition 2 in the main text is a special case under AR(1) processes. The 

regularity Assumptions (A4)-(A8) are satisfied when (a) Processes }T,1,t,ε{ i

t  , }T,1,t,{ i

t υ  

and }T,1,t,{ i

t u  for each asset i are stationary and ergodic, (b) For all t, s and i, 
i

tε ,
i

tυ  and 
i

tu  

are independent of sf  (factor in time s), 
i

sε  (regression residuals in time s), unconditional means 

of beta 
i

β  and characteristic 
i

c , and sγ  (risk premium in time s), and the maximum values for 

unconditional mean of beta and characteristic of all assets are finite. (c) In each time t, residuals in 
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]ε,,[ε N

t

1

t  , ],,[ N

t

1

t νν  and ],,[ N

t

1

t uu   are asymptotically weakly correlated cross-sectionally 

(Shanken,1992).   


