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ABSTRACT

We study slope factors (estimated OLS slopes from Fama-Macbeth regressions of firm returns

on lagged standardized characteristics) in relation to sorted and ranked factors. We show that slope

factors provide significant value if they are more pure play, i.e., purged of the effects of a broad

set of characteristics. Starting from forty-seven characteristics, we show, by a new risk factor

discovery method, that the best SDF varies by factor construction class. On a large collection of

test assets, the best SDF from slope factors uniformly prices more portfolios, ETFs, and stocks.

These findings support a greater use of slope factors in asset pricing.

JEL Classification: G11, G12, G14

Keywords: factor risk premia; firm level characteristics; marginal likelihood; pricing test;

stochastic discount factor; risk factors



1 Introduction

An important question relevant to the vast literature on pricing in the cross section is whether

the method used to construct factors from firm-level characteristics has a bearing on the pricing

performance of those factors. Although the dominant approach to creating factors is by sorting

methods, typically 3 by 2 sorts of firms by the characteristic of interest and size, a method we

call the differential method, there are at least two alternatives, the rank factor method and the

slope factor method.1 In the slope factor method, factors are constructed by running Fama and

Macbeth cross-sectional regressions of firm-level returns on firm-level lagged characteristics. The

OLS estimates of the slopes in these cross-sectional regressions are long-short portfolios that give

unit weighted exposure to each standardized lagged characteristic and zero weighted exposure

to all other standardized lagged characteristics. Thus, these OLS estimates of the slopes are

characteristic-specific long-short portfolios that load on that characteristic, removing the influence

of other characteristics included in the regression.

There are fundamental conceptual differences between slope factors on the one hand and

differential and rank factors on the other. Because the characteristics at the firm level are correlated,

when we double-sort, or use ranks, and take long positions in firms with a high value of a

characteristic, we also indirectly take long positions at high values of any characteristic that is

positively correlated with that characteristic, and we take long positions at low values of any

characteristic that is negatively correlated with that characteristic. Moreover, when we double-sort

and take short positions on firms with a low value of a characteristic, we also indirectly take short

positions at low values of any characteristic that is positively correlated with that characteristic

1Rank factors are constructed by grouping excess returns by market cap and then using the normalized rank of
lagged characteristics as weights, for example, Asness, Frazzini, and Pedersen (2019); Kelly, Pruitt, and Su (2019);
Chammaen, Pelger, and Zhu (2022); Freyberger, Neuhierl, and Weber (2020); Kozak, Nagel, and Santosh (2020).
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and take short positions at high values of any characteristic that is negatively correlated with that

characteristic. Therefore, factors constructed by double-sort and rank methods also incorporate

returns to positions in characteristics that are correlated with the characteristic of interest.2 Because

it is based on the regression of returns on lagged standardized characteristics, the slope factor

method potentially can elegantly overcome this problem.

Recently, Fama and French (2020) have compared differential and slope factors (what they call

cross section factors) in the context of the FF5 and FF6 models. In their comparison, Fama and

French (2020) replace the factors in the FF5 model by the OLS estimates of the four slopes in the

FM regressions

rit = α t +β t,mvemveit−1 +β t,bmbmit−1 +β t,opopit−1 +β t,invinvit−1 + ε it (1)

where rit is the excess return on equity of firm i, i = 1, . . . ,nt in month t, t = 1, . . . ,T , and the RHS

variables are the month (t − 1) standardized values of size, the book-to-market ratio, operating

profitability, and the rate of growth of assets. Then, for the FF6 model, Fama and French (2020)

create a new set of slope factors, these being the OLS estimates of the five slopes in the FM

regressions

rit = α t +β t,mvemveit−1 +β t,bmbmit−1 +β t,opopit−1 +β t,invinvit−1 +β t,mommomit−1 + ε it (2)

where momit−1 is the last period standardized momentum characteristic. Then on 210 test

portfolios, Fama and French (2020) show that the FF5 and FF6 models based on slope factors

do better pricing than the models based on the original differential factors.

2One can attempt to correct this problem by sorting on more characteristics, something that is almost never done.
However, it is impractical to sort by more than a few characteristics, so even this solution, if implemented, would best
only partially correct the problem.
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Although intriguing, the paper leaves several questions unanswered. If mom is correlated with

one or more of the other lagged characteristics in the first of the above FM regression, then the

OLS estimates (the slope factors) of the four common slopes from the two regressions would be

different. There is no discussion in the paper on why one set should be adopted over the other.

In fact, it is possible to create any number of different sets of slope factors for the FF5 (or FF6)

model. Consider the following specification of the FM regression in the tth cross section:

rit = α t +β t,mvemveit−1 +β t,bmbmit−1 +β t,opopit−1 +β t,invinvit−1+

β
′
t,othercotherc+ ε it

(3)

where otherc denotes a vector of other lagged and standardized characteristics that can be entered

as controls. The slope factors of mve, bm, op and inv are the OLS estimates of β t,mve, β t,bm, β t,op

and β t,inv, respectively. One obtains different slope factors by altering the composition of otherc.

If the number of elements in otherc is k, one can construct 2k different sets of slope factors for the

FF5 model. Fama and French (2020) do not consider or comment on this issue. Another question

left unanswered is whether the outperformance of slope factors, documented in a set of 210 test

portfolios, would persist in a larger and more comprehensive collection of test assets.

In this paper, we extend the analysis in Fama and French (2020) in several crucial respects. Our

first point is that to obtain value from slope factors, one should construct slope factors from Fama-

Macbeth (FM) regressions that include a broad set of lagged (standardized) characteristics on the

right-hand side (RHS).3 The resulting slope factors are then more pure play (that is, more closely

connected to the underlying characteristics) than slope factors constructed with fewer controls.

Importantly, only then are the slope factors materially different from the differential and rank

3We resolve the ambiguity surrounding controls by including as many controls as possible, upper bounding this
number to ensure that enough firms with complete data on that many controls are available and that multicollinearity
remains within limits.
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factors. Second, we develop generalized slope factors from linear and quadratic controls. These

generalized slope factors offer better pricing than slope factors constructed from linear controls.

Third, we show that to properly evaluate slope factors in relation to factors constructed by other

methods, it is necessary to estimate and then compare SDFs based on the different sets of factors.4

Fourth, we show that estimated SDFs based on more pure play slope factors do better pricing of

the cross section than estimated SDFs based on less pure play slope factors. Finally, we document

the evidence in favor of the estimated slope factor-based SDF on a large collection of test assets.

The basis of our analysis are factors constructed from 47 characteristics at the firm level. Data

on these characteristics are taken from Green, Hand, and Zhang (2017) and Gu, Kelly, and Xiu

(2020), and sourced from Compustat and I/B/E/S, for the period January 1989 to December 2020.

We do not consider more characteristics because that tends to reduce the cross-sectional sample

sizes and increases multicollinearity, causing instabilities in the FM least-squares regressions.

Furthermore, this number of characteristics is already large enough to make a clear distinction

between more pure play factors and less pure play factors.

To find risk factors from our pool of slope factors, we use a Bayesian model comparison

approach. This approach is based on the model scan methodology of Chib and Zeng (2020) and

comprises three steps. We refer to these steps as “pruning - augmentation - model scanning”, or

PAMS for short.5 To briefly summarize, in Step 1, the pruning step, we apply a method to prune

the set of factors to determine an initial set of risk factors. This pruning step is not based on a

purely statistical method such as LASSO, but rather on a finance-driven test of the (incremental)

value of each factor, under the assumption that every other factor is a risk factor. Factors that

4That the SDF, and the factors in the SDF, the risk factors, are the foundation for pricing is a point forcefully made
in Cochrane (2009); see also Feng, Giglio, and Xiu (2020).

5Possible alternatives include Kozak et al. (2020), Hwang and Rubesam (2022) and Bryzgalova, Huang, and
Julliard (2023).
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affirmatively satisfy this test, at a particular level of Bayesian posterior probability confidence, are

not pruned. We then have additional steps in the method in which the assessment of the likely risk

factors made in Step 1 is revised and updated. In particular, in Step 2, the augmentation step, we

infer which of the pruned factors in Step 1 cannot be priced by the factors that were not pruned.

This step is a way to catch the false negatives from Step 1. Then in Step 3, the model scanning

step, the factors from Step 1, augmented with the non-priced factors from Step 2, are subjected to

a model scan to remove false positives. In model scanning, all possible models of the SDF with

risk factors and non-risk factors are estimated.6 These models are compared by Bayesian marginal

likelihoods. The risk factors in the best model (the model with the highest marginal likelihood) are

then considered the best risk factors.

In our data, PAMS produces twenty slope risk factors, 14 differential risk factors, and 19 rank

risk factors. There are fewer differential and rank risk factors because each of these incorporates the

returns to implicitly held positions in characteristics correlated with that characteristic. Therefore,

fewer of these “jumbo” factors are needed in the SDF. Although the sets of risk factors are different,

the best SDFs are directly comparable. Thus, it becomes possible to evaluate the performance of

the different construction methods even though the factors themselves are not directly comparable

and the number and composition of risk factor sets are different.

In order to fully evaluate the relative worth of the estimated SDFs for pricing the cross section,

we consider a large number of test assets consisting of the excess returns on 1150 portfolios, 1480

ETFs and 6024 stocks. In addition, we also consider common (extant) risk factors as test assets.

Our pricing comparison shows that the estimated SDF based on slope factors offers better pricing

than the estimated SDFs based on differential and rank factors.
6This model enumeration and estimation is impossible at the outset because the number of models in the model

space with forty-eight factors is 248 −1, which is prohibitively large. However, typically, at the end of the pruning and
augmentation steps, about 20-25 factors remain, and model scanning is feasible and effective.
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The remainder of the paper is organized as follows. In Section 2, we review the three-factor

construction methods with supplementary commentary on aspects of the resulting factors that are

relevant to our discussion. In Section 3.2 we discuss the Bayesian methodology for the discovery

of risk factors that can be applied to our large pool of factors to infer the risk factors most supported

by the data. Section 4 presents the risk factors that we discover applying our Bayesian inference

procedure. In Section 5 we first detail Bayesian pricing criteria to assess if a testing asset is priced,

and we detail the application of these criteria to determine the pricing performance of the different

risk factor collections in portfolios, ETFs, and stocks. Section 6 provides some information on

why slope factors outperform. Section 7 concludes.

2 Factor Construction Methods

2.1 Data

We collect monthly stock returns data from CRSP. The set of characteristics are those considered

in Green et al. (2017) and Gu et al. (2020), and are sourced from Compustat and I/B/E/S. Our

data contain information from 14,860 firms on 40 characteristics from January 1989 to December

2020.7

For our analysis, we began the sample from January 1989, which is the earliest month for which

complete data on our selected characteristics are available in the I/B/E/S data set. Our aim is to

be able to estimate cross-sectional regressions for firms that have a complete set of characteristics

7The initial data, which we source from Green et al. (2017), has ninety-four characteristics. We pared these down
to 47 characteristics using the following reasonable filters. First, to mitigate multicollinearity, characteristics with
variance inflation factors greater than seven are discarded. Second, the characteristics with high missingness (greater
than 50% of the sample) are also removed. Finally, the characteristics that are indicator variables are removed.
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in the preceding cross sections. One common approach is only analyzing firms with nonmissing

values of all characteristics in each cross section. However, this approach sacrifices a large part of

the data that may contain valuable information. Another approach is to replace the missing value

with the mean of those characteristics between firms.

However, the latter approach is somewhat coarse in that it ignores the fact that different

characteristics are likely to be correlated and that characteristics are likely, on average, to be

different for different-sized firms and for firms in different industries. With this in mind, in our

approach to imputing the missing characteristics, we first classify firms into two groups, small

and large, by the median value of firm sizes in that cross section, and then within each size

group, we further categorize each firm into ten industry groups based on its SIC4 code. In this

way, each firm is uniquely assigned to one of the 2× 10 = 20 groups. Then, if any firm has a

missing value for a particular characteristic, we replace that missing value with the group mean of

that characteristic from firms within the same group. This imputation procedure is based on the

assumption that firms of similar size within the same industry would share similar characteristics.

It is possible that this nonparametric imputation could be extended to involve other characteristics,

but grouping/matching on too many characteristics reduces the group sample size and makes the

imputation much more noisy. Our grouping on size and industry, on the other hand, brings in

(plausibly) the most relevant information for doing effective imputations.

After imputation, we obtain a rich collection of cross-sectional data sets in which the minimum

number of firms is 2051 and the maximum number of firms is 5184. We summarize the data, by

the forty-seven characteristics in Table 1.
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Table 1 The descriptive statistics of the 47 characteristics
This table presents acronym, full names, definition, and descriptive statistics of characteristics generated by the code
from Green et al. (2017). The min, mean, max, median, and standard deviation are for the characteristics across firms
and months. The data are from January 1989 to December 2020.

Acronym Firm Definition Min Mean Max Median Stdcharacteristics
acc Working capital ac-

cruals
Annual income before extraordinary items (ib) minus
operating cash flows (oancf) divided by average total assets
(at); if oancf is missing then set to change in act - change
in che - change in lct + change in dlc + change in txp - dp

-1.022 -0.045 0.500 -0.055 0.109

age # years since first
Compustat coverage

Number of years since first Compustat coverage 1.000 13.000 58.000 16.653 12.94

agr Asset growth Annual percent change in total assets (at) -0.685 0.067 6.062 0.148 0.419
baspread Bid-ask spread Monthly average of daily bid-ask spread divided by average

of daily spread
0.000 0.035 0.901 0.048 0.051

beta Beta Estimated market beta from weekly returns and equal
weighted market returns for 3 years ending month t-1 with
at least 52 weeks of returns

-0.742 0.992 3.937 1.068 0.666

bm Book-to-market Book value of equity (ceq) divided by end of fiscal-year-
end market capitalization

-2.346 0.531 7.644 0.651 0.605

cash Cash holdings Cash and cash equivalents divided by average total assets -0.079 0.077 0.978 0.161 0.204
cashdebt Cash flow to debt Earnings before depreciation and extraordinary items

(ib+dp) divided by avg. total liabilities (lt)
-99.683 0.111 2.176 -0.015 1.245

cashpr Cash productivity Fiscal-year-end market capitalization plus long-term debt
(dltt) minus total assets (at) divided by cash and equivalents
(che)

-520.623 -0.072 600.277 -1.224 55.49

cfp Cash flow to price
ratio

Operating cash flows divided by fiscal-year-end market
capitalization

-2.797 0.075 2.623 0.074 0.235

chatoia Industry-adjusted
change in asset
turnover

2-digit SIC - fiscal-year mean-adjusted change in sales
(sale) divided by average total assets (at)

-1.429 0.001 1.194 -0.003 0.216

chcsho Change in shares out-
standing

Annual percent change in shares outstanding (csho) -0.891 0.008 2.576 0.100 0.298

chmpia Industry-adjusted
change in profit
margin

Industry-adjusted change in number of employees -24.162 -0.077 3.502 -0.151 0.796

depr Depreciation/PP&E Depreciation divided by PP&E -0.984 0.188 6.703 0.307 0.432
dy Dividend to price Total dividends (dvt) divided by market capitalization at

fiscal-year-end
-6.122 0.000 0.350 0.014 0.033
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Table 1 The descriptive statistics of the 47 characteristics

Acronym Firm Definition Min Mean Max Median Stdcharacteristics
egr Growth in common

shareholder equity
Annual percent change in book value of equity (ceq) -3.837 0.072 8.286 0.134 0.699

ep Earnings to price Annual income before extraordinary items (ib) divided by
end of fiscal-year market cap

-7.523 0.043 0.437 -0.038 0.345

gma Gross profitability Revenues (revt) minus cost of goods sold (cogs) divided by
lagged total assets (at)

-0.961 0.297 1.778 0.345 0.335

grcapx Growth in capital ex-
penditures

Percent change in capital expenditures from year t-2 to year
t

-13.886 0.225 61.947 0.910 3.294

herf Industry sales concen-
tration

2-digit SIC - fiscal-year sales concentration (sum of
squared percent of sales in industry for each company)

0.009 0.044 1.000 0.070 0.077

hire Employee growth rate Percent change in number of employees (emp) -0.711 0.027 3.973 0.088 0.323
idiovol Idiosyncratic return

volatility
Standard deviation of residuals of weekly returns on
weekly equal weighted market returns for 3 years prior to
month end

0.000 0.055 0.279 0.064 0.037

ill Illiquidity Average of daily (absolute return / dollar volume) 0.000 0.000 0.001 0.000 0.000
indmom Industry momentum Equal weighted average industry 12-month returns -0.761 0.112 3.641 0.138 0.284
invest Capital expenditures

and inventory
Annual change in gross property, plant, and equipment
(ppegt) + annual change in inventories (invt) all scaled by
lagged total assets (at)

-0.507 0.032 1.385 0.061 0.153

lev Leverage Total liabilities (lt) divided by fiscal-year-end market
capitalization

0.000 0.622 77.752 2.211 4.674

lgr Growth in long-term
debt

Annual percent change in total liabilities (lt) -0.758 0.069 9.612 0.229 0.727

mom12m 12-month momentum 11-month cumulative returns ending one month before
month end

-0.957 0.056 11.952 0.125 0.582

mom1m 1-month momentum 1-month cumulative return -0.721 0.002 2.167 0.011 0.153
mve Size Natural log of market capitalization at end of month t-1 2.357 12.313 19.018 12.414 2.257
nincr Number of earnings

increases
Number of consecutive quarters (up to eight quarters) with
an increase in earnings (ibq) over same quarter in the prior
year

0.000 1.000 8.000 0.989 1.326

operprof Operating profitability Revenue minus cost of goods sold - SG&A expense -
interest expense divided by lagged common shareholders’
equity

-8.828 0.614 13.119 0.783 1.201

pchgm pchsale % change in gross
margin - % change in
sales

Percent change in gross margin (sale-cogs) minus percent
change in sales (sale)

-12.26 -0.004 4.761 -0.070 0.843

pricedelay Price delay The proportion of variation in weekly returns for 36 months
ending in month explained by 4 lags of weekly market
returns incremental to contemporaneous market return

-15.849 0.068 15.597 0.153 1.076
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Table 1 The descriptive statistics of the 47 characteristics

Acronym Firm Definition Min Mean Max Median Stdcharacteristics
ps Financial statement

score
Sum of 9 indicator variables to form fundamental health
score

0.000 5.000 9.000 4.621 1.655

roaq Return on assets Income before extraordinary items (ibq) divided by one
quarter lagged total assets (atq)

-0.590 0.005 0.159 -0.004 0.055

roeq Quarterly return on
equity

Earnings before extraordinary items divided by lagged
common shareholders’ equity

-2.280 0.021 1.766 -0.001 0.154

roic Return on invested
capital

Annual earnings before interest and taxes (ebit) minus
nonoperating income (nopi) divided by non-cash enterprise
value (ceq+lt-che)

-23.554 0.059 1.005 -0.143 1.267

salecash Sales to cash Annual sales divided by cash and cash equivalents -300.275 7.889 2503.483 58.36 190.378
saleinv Sales to inventory Annual sales divided by total inventory -35.442 12.160 1031.216 34.889 72.929
salerec Sales to receivables Annual sales divided by accounts receivable -21796 5.949 210.006 11.472 70.916
sgr Sales growth Annual percent change in sales (sale) -0.936 0.086 8.500 0.171 0.522
sp Sales to price Annual revenue (sale) divided by fiscal-year-end market

capitalization
-4.131 0.870 37.551 1.778 2.882

std dolvol Volatility of liquid-
ity (dollar trading vol-
ume)

Monthly standard deviation of daily dollar trading volume 0.000 0.708 2.783 0.813 0.427

std turn Volatility of liquidity
(share turnover)

Monthly standard deviation of daily share turnover 0.000 2.342 736.352 4.833 11.773

tang Debt capacity/firm
tangibility

Cash holdings + 0.715 * receivables + 0.547 * inventory +
0.535 * PPE/ total assets

0.000 0.525 0.982 0.520 0.162

tb Tax income to book
income

Tax income, calculated from current tax expense divided
by maximum federal tax rate, divided by income before
extraordinary items

-27.344 -0.048 15.362 -0.096 1.685
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2.2 Slope factors

As first stated in Fama (1976), the OLS estimates of the coefficients in cross-sectional regressions

of excess returns on standardized lagged characteristics are long-short portfolios. Specifically,

these OLS coefficients give unit weighted exposure to each standardized lagged characteristic

in the cross-section regression and zero weighted exposure to all other standardized lagged

characteristics. Thus, these OLS estimates are characteristic-specific long-short portfolios that

load on that characteristic.

To construct these factors, we estimate a sequence of cross-sectional regressions for t =

1,2, ...,T (in our sample t run from January 1989 to December 2020). Suppose that the tth cross

section consists of nt firms that are independently sampled from the population of firms at time

t . Let rt = (r1t , ...,rnt ,t) denote the sample vector of excess returns and let the characteristic

of jth firm be c j. Let the sample data on the c j at the end of time t − 1 be denoted by the

nt × 1 vector, c j,t−1 = (c j,1t−1, ...,c j,nt t−1), j = 1,2, ....,47. Let c̃ j,t−1 denote the characteristic

after standardization, i.e., after subtracting the sample mean and dividing by the sample standard

deviation. In vector-matrix notation, the tth cross-sectional regression is given by

rt =Xtβ t + ε t (4)

where Xt = (int , c̃1,t−1, c̃2,t−1, ..., c̃47,t−1) is a nt ×48 matrix of consisting of int (a vector of ones)

and sample data on the 47 characteristics. Then, the sequence of OLS estimates of β t , namely

β̂ t = (α̂ t , β̂ 1,t , ..., β̂ 47,t) = (X ′
tXt)

−1X ′
trt , t = 1, ...,T , are a sequence of long-short portfolios that

load purely on characteristic c j, j = 1,2, ...,47. The estimate α̂ t is a long portfolio that can be

thought of as the market portfolio.
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It is important to understand that the RHS variable Xt in these cross-sectional regressions

is standardized for each characteristic j within each cross section. Thus, the sample mean and

standard deviation of Xt are zero and one, respectively, for all j and t. Therefore, the lagged

variables on the RHS are unitless and the slope coefficients on the RHS are in the same units as

the stock returns on the LHS. Only because of this standardization do the OLS slopes become

long-short portfolios.

REMARK 1 In applying this approach, to capture potential nonlinearities, for every characteristic,

we also include on the RHS the square of the characteristic (standardized to have a mean of zero

and the standard deviation of one). In particular, the matrix of covariates in these cross-sectional

regressions is

Xt = (int , c̃1,t−1, c̃
2
1,t−1, ..., c̃47,t−1, c̃

2
47,t−1)

and the long-short portfolio of the jth characteristic is computed by averaging the OLS estimates

of the pair of linear and quadratic terms. Our experiments show that this approach produces better

slope factors (in the sense that these slope factors provide better pricing of the cross section).

It is not difficult to show the long-short property of the OLS estimates of the slopes from these

cross-sectional regressions. For simplicity, consider the case of two characteristics. Then, on

letting W ′
t = (X ′

tXt)
−1X ′

t ,

β̂ t =W ′
t rt (5)

which can be written out as 
α̂ t

β̂ 1,t

β̂ 2,t

=


w′

0rt

w′
1rt

w′
2rt


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where w′
j is the jth row of W ′

t . Now from the trivial identity W ′
t Xt = I3, where I3 is the 3× 3

identity matrix, written out in full as


w′

0

w′
1

w′
2

(int ,c1,t−1,c2,t−1) =


1 0 0

0 1 0

0 0 1

 (6)

we can see, by row-column multiplication, that w j are proper weights that satisfy the following

restrictions,

w′
0int = 1; w′

0c1,t−1 = 0; w′
0c2,t−1 = 0

w′
1int = 0; w′

1c1,t−1 = 1; w′
1c2,t−1 = 0 (7)

w′
2int = 0; w′

2c1,t−1 = 0; w′
2c2,t−1 = 1

Reading these restrictions row by row, we can now conclude that α̂ t =w′
0rt is a long portfolio (its

weights w0 sum to one and it gives zero weighted exposure to the other two characteristics) and

can be viewed as the market portfolio; that β̂ 1,t = w′
1rt is a long-short portfolio (its weights w1

sum to zero, it gives unit-weighted exposure to the first lagged characteristic and zero weighted

exposure to the second lagged characteristic); and that β̂ 2,t = w′
2rt is a long-short portfolio (its

weights w2 sum to zero, it gives zero weighted exposure to the first lagged characteristic and

unit-weighted exposure to the second lagged characteristic). Thus, β̂ 1,t and β̂ 2,t are characteristic

specific long-short portfolios.

We supplement these slope factors with the market portfolio from Kenneth French data library.

We provide summary statistics of Mkt and the constructed slope factors in Table 2.
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Table 2 The descriptive statistics of the slope factors
This table presents the descriptive statistics of the slope factors in units of monthly returns (%).
The acronym is described in Table 1. Descriptive statistics include the mean, median, standard
deviation, and the 0.5%, 99.5% quantiles across the time series of each slope factor. The data are
from January 1989 to December 2020.

Mean Median Std 0.5% quantile 99.5% quantile
Mkt 0.739 1.19 4.362 -13.61 11.445
s.acc -0.081 -0.152 0.672 -1.574 1.769
s.age -0.03 -0.007 0.225 -0.657 0.570
s.agr -0.072 -0.071 0.44 -1.425 1.352
s.baspread -0.111 -0.195 0.697 -1.968 2.453
s.beta -0.039 -0.027 0.722 -2.242 2.122
s.bm 0.061 0.072 0.338 -0.970 1.020
s.cash 0.050 0.050 0.404 -1.177 1.378
s.cashdebt 0.072 0.046 1.023 -3.029 3.043
s.cashpr -0.013 -0.012 0.337 -1.167 1.051
s.cfp -0.023 0.025 0.645 -2.576 1.865
s.chatoia 0.034 0.025 0.345 -0.910 1.045
s.chcsho -0.033 -0.035 0.234 -0.673 0.862
s.chempia 0.038 0.070 1.531 -4.340 3.910
s.depr -0.002 -0.003 0.241 -0.640 0.679
s.dy -0.068 -0.047 0.576 -2.427 2.185
s.egr -0.017 -0.018 0.318 -0.773 0.872
s.ep -0.034 0.025 1.666 -6.449 4.263
s.gma 0.042 0.029 0.410 -1.062 1.307
s.grcapx -0.018 -0.029 0.219 -0.616 0.940
s.herf -0.02 -0.025 0.211 -0.535 0.870
s.hire -0.056 -0.056 0.797 -2.805 2.416
s.idiovol 0.018 -0.028 0.641 -1.471 2.331
s.ill 0.158 0.125 0.415 -0.815 1.438
s.indmom 0.032 0.076 1.247 -4.415 3.942
s.invest -0.007 -0.019 0.327 -0.835 0.938
s.lev -0.017 -0.022 0.503 -1.765 1.412
s.lgr 0.005 0.001 0.303 -0.864 1.161
s.mom12m 0.078 0.073 0.526 -1.511 1.955
s.mom1m -0.162 -0.085 0.660 -2.948 1.904
s.mve 0.014 0.031 0.258 -0.786 0.566
s.nincr 0.047 0.040 0.157 -0.394 0.443
s.operprof 0.009 0.004 0.275 -0.807 0.817
s.pchgm pchsale 0.004 -0.025 0.759 -2.043 2.492
s.pricedelay -0.022 -0.032 0.271 -0.73 0.799
s.ps 0.020 0.016 0.226 -0.491 0.696
s.roaq 0.104 0.169 1.249 -4.018 3.650
s.roeq 0.023 -0.019 0.716 -2.041 2.277
s.roic -0.216 -0.168 1.787 -6.459 4.773
s.salecash -0.002 -0.011 0.254 -0.849 0.687
s.saleinv 0.004 0.000 0.155 -0.464 0.590
s.salerec -0.012 -0.030 0.748 -2.637 3.395
s.sgr -0.039 -0.026 0.322 -1.000 0.736
s.sp 0.024 0.018 0.389 -0.967 1.441
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Table 2 continued: The descriptive statistics of the slope factors

Mean Median Std 0.5% quantile 99.5% quantile
s.std dolvol -0.018 0.020 0.467 -1.693 1.127
s.std turn -0.028 -0.040 0.406 -0.890 1.138
s.tang 0.009 0.023 0.353 -0.962 0.922
s.tb 0.008 0.006 0.281 -1.016 1.176

2.3 Differential factors

In contrast to slope factors, differential factors are constructed from characteristics by the 3 by 2

double-sorting method of Fama and French (1993) and Fama and French (2015) only control for

size. The goal is to make a (zero-cost) long-short (LS) portfolio that takes long positions on firms

with a high value of a given characteristic and short positions on firms with a low value of that

characteristic. The return on this portfolio in month t is the realized value of that factor in that

month.

Let c j denote the characteristic of interest other than mve. In each cross-section t, one divides

the stocks at time t into two groups, small and large, based on the median of market-capitalization,

mvei,t−1, i ≤ nt . Then, one further sorts the stocks in the small and large groups into an additional

(say) 3 groups based on the 0.3 and 0.7 quantiles of the lagged values of that characteristic,

c j,i,t−1, i ≤ nt . Thus, with this double-sorting method, the stocks are allocated to six buckets or,

equivalently, an array containing 3 rows and 2 columns. A 3 by 2 arrays such as this is calculated

for each characteristic, excluding the size characteristic.

Next, the excess return of these six buckets is value-weighted, i.e. multiplied by its stock market

cap divided by the total market cap in that bucket. Then, a long portfolio (a portfolio that goes long

on that characteristic) is constructed as the sum of the value-weighted stock excess returns in the
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(3,1) and (3,2) buckets. Similarly, a short portfolio is constructed as the sum of the value-weighted

returns in the (1,1) and (1,2) buckets. Then, the differential factor for the time period t is given by

the difference of these long and short portfolios.

Finally, for the size characteristic mve, the 3 by 2 sorted and value-weighted arrays made

in the preceding step for the book-to-market (bm), operating profitability (operprof), and asset

growth (agr) characteristics are used to form long-short portfolios that represent the size factor. In

particular, we create a long-short size portfolio that controls for bm by summing the three rows

of the bm array down the first column and subtracting the sum of the three rows in the bm array

down the second column. In the same way, we use the 3 by 2 arrays of operating profit and asset

growth to create long-short-size portfolios that control operprof and agr. The size factor for this

cross section t is then given by the average of these three long-short portfolios. The descriptive

statistics of the 47 differential factors are in Table 3.

Table 3 The descriptive statistics of the differential factors
This table presents the descriptive statistics of the differential factors in units of monthly returns
(%). The acronym is described in Table 1. Descriptive statistics include the mean, median,
standard deviation, and the 0.5%, 99.5% quantiles across the time series of each differential
factor. Data are from January 1989 to December 2020.

Mean Median Std 0.5% quantile 99.5% quantile
Mkt 0.739 1.190 4.362 -13.610 11.445
d.acc -0.319 -0.272 1.947 -7.464 4.421
d.age -0.073 -0.051 2.744 -10.236 9.712
d.agr -0.374 -0.127 1.862 -7.236 4.150
d.baspread -0.250 -0.425 7.146 -20.573 26.953
d.beta 0.154 0.209 6.174 -17.78 25.661
d.bm 0.242 0.132 3.162 -10.005 9.874
d.cash 0.416 0.570 3.786 -10.118 13.431
d.cashdebt 0.159 0.170 2.709 -8.537 7.741
d.cashpr -0.122 -0.010 3.387 -10.024 11.336
d.cfp 0.422 0.371 3.937 -11.273 14.539
d.chatoia 0.177 0.197 1.147 -3.354 2.891
d.chcsho -0.382 -0.205 2.473 -8.421 5.878
d.chempia -0.142 -0.033 1.306 -3.354 4.046
d.depr 0.363 0.418 3.238 -10.809 11.270
d.dy -0.207 -0.330 3.675 -12.629 10.381
d.egr -0.265 -0.117 1.708 -6.548 4.110
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Table 3 continued: The descriptive statistics of the differential factors

Mean Median Std 0.5% quantile 99.5% quantile
d.ep 0.195 0.118 4.212 -14.038 13.255
d.gma 0.277 0.230 2.423 -5.976 6.906
d.grcapx -0.196 -0.041 1.682 -5.326 4.605
d.herf -0.135 -0.005 2.170 -7.437 6.352
d.hire -0.158 -0.049 2.216 -7.063 6.685
d.idiovol -0.014 0.020 6.726 -21.524 22.623
d.ill -0.417 -0.024 5.467 -19.937 14.289
d.indmom 0.445 0.485 3.743 -12.049 14.641
d.invest -0.274 -0.118 2.070 -6.683 6.014
d.lev 0.025 0.121 3.968 -13.492 10.981
d.lgr -0.188 -0.230 1.522 -4.422 4.573
d.mom12m 0.645 0.745 4.921 -18.853 14.963
d.mom1m -0.359 -0.194 3.877 -14.820 13.697
d.mve 0.450 -0.486 10.845 -25.309 42.551
d.nincr 0.357 0.388 1.256 -4.262 3.591
d.operprof 0.273 0.283 1.743 -5.091 5.349
d.pchgm pchsale 0.231 0.242 1.448 -3.743 4.377
d.pricedelay -0.010 -0.084 1.926 -5.486 6.111
d.ps 0.127 0.202 1.699 -6.298 4.246
d.roaq 0.456 0.556 3.287 -12.429 9.151
d.roeq 0.422 0.473 3.139 -12.559 8.870
d.roic 0.190 0.255 3.145 -10.062 9.460
d.salecash -0.095 -0.029 2.611 -7.543 8.041
d.saleinv 0.018 0.058 1.741 -4.974 4.715
d.salerec 0.060 -0.072 1.767 -4.791 4.815
d.sgr -0.246 -0.169 2.148 -5.735 4.788
d.sp 0.288 0.299 3.108 -9.850 10.202
d.std dolvol 0.191 0.111 3.415 -10.722 10.495
d.std turn 0.383 0.352 4.562 -12.922 18.009
d.tang 0.302 0.346 2.664 -6.967 8.454
d.tb 0.225 0.249 2.107 -7.066 7.584

2.4 Rank factors

Just as in the previous method, in each cross-section t, one divides the stocks at time t into two

groups, small and large, based on the median of market-capitalization, mvei,t−1, i ≤ nt . Let It0 =

{i : firm i is a small firm} and let It1 = {i : firm i is a large firm} denote the indices of small firms

and large firms at time t. Let the number of firms in each group be nt0 and nt1, respectively.
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Now for each characteristic c j, let c j,0,t−1 = {c j,i,t−1 : i ∈ It0} be the vector of characteristics of

length nt0 at time (t − 1) of all small firms, and similarly let c j,1,t−1 = {c j,i,t−1 : i ∈ It1} be the

vector of characteristics of length nt1 at time (t −1) of all large firms. Now let ra j,0,t−1 denote the

vector of ranks of the values in c j,0,t−1 , and let rank j,0,t−1 =
ra j,0,t−1
nt0+1 denote the normalized ranks.

Likewise, let ra j,1,t−1 denote the vector of ranks of the values in c j,1,t−1, and let rank j,1,t−1 =

ra j,1,t−1
nt1+1 . Further, let the sample mean of the values in rank j,0,t−1 be denoted by ¯rank j,0,t−1 and

similarly let ¯rank j,1,t−1 denote the sample mean of the values in rank j,1,t−1. Now define the vectors

of weights

w j,0,t−1 =
rank j,0,t−1 − ¯rank j,0,t−1

sum|rank j,0,t−1 − ¯rank j,0,t−1|
and w j,1,t−1 =

rank j,1,t−1 − ¯rank j,1,t−1

sum|rank j,1,t−1 − ¯rank j,1,t−1|

which each sums to zero.

Finally, let prm0,t and prm1,t be the vectors of excess returns at time t of small and large firms,

respectively. The rank factor corresponding to the characteristic c j is now defined as

f j,t = sum(w j,0,t−1 · prm0,t)+ sum(w j,1,t−1 · prm1,t)

where · is the dot-product operator for multiplying two vectors. The descriptive statistics of the 47

rank factors constructed from our sample are given in Table 4.

Table 4 The descriptive statistics of the rank factors
This table presents the descriptive statistics of the rank factors in units of monthly returns (%).
The acronym is described in Table 1. Descriptive statistics include the mean, median, standard
deviation, and the 0.5%, 99.5% quantiles across the time series of each rank factor. Data are from
January 1989 to December 2020.

Mean Median Std 0.5% quantile 99.5% quantile
Mkt 0.739 1.190 4.362 -13.610 11.445
rank.acc -0.378 -0.258 1.967 -7.135 3.716
rank.age -0.105 0.055 2.726 -10.976 7.405
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Table 4 continued: The descriptive statistics of the rank factors

Mean Median Std 0.5% quantile 99.5% quantile
rank.agr -0.714 -0.530 2.226 -9.669 4.200
rank.baspread 0.235 -0.047 6.626 -16.581 25.781
rank.beta 0.081 -0.118 5.838 -14.819 23.162
rank.bm 0.434 0.346 2.790 -8.458 8.502
rank.cash 0.422 0.430 3.735 -11.195 14.646
rank.cashdebt -0.030 0.322 3.396 -15.876 8.055
rank.cashpr -0.199 -0.085 2.918 -8.186 9.847
rank.cfp 0.290 0.392 4.090 -14.188 13.326
rank.chatoia 0.139 0.163 0.984 -2.371 2.650
rank.chcsho -0.439 -0.376 2.537 -8.572 6.685
rank.chempia -0.290 -0.208 1.565 -5.470 3.565
rank.depr 0.397 0.375 3.272 -8.936 13.614
rank.dy -0.332 -0.540 3.313 -10.173 8.850
rank.egr -0.439 -0.178 2.227 -10.055 5.071
rank.ep -0.059 0.047 4.575 -16.842 12.162
rank.gma 0.179 0.291 2.285 -4.794 5.730
rank.grcapx -0.356 -0.385 1.594 -4.838 3.982
rank.herf -0.086 -0.087 2.216 -5.838 6.493
rank.hire -0.378 -0.250 1.947 -5.925 5.140
rank.idiovol 0.298 -0.117 6.545 -16.38 27.745
rank.ill 0.342 0.039 3.744 -8.430 14.625
rank.indmom 0.560 0.639 3.869 -12.145 14.535
rank.invest -0.458 -0.328 1.828 -5.182 4.682
rank.lev 0.085 0.011 3.970 -14.065 10.533
rank.lgr -0.436 -0.459 1.358 -4.027 2.899
rank.mom12m 0.338 0.790 4.991 -20.868 11.333
rank.mom1m -0.838 -0.378 4.321 -16.690 10.584
rank.mve -0.536 -0.123 4.508 -19.221 9.868
rank.nincr 0.287 0.343 1.207 -4.145 3.306
rank.operprof 0.143 0.290 1.958 -7.497 4.360
rank.pchgm pchsale 0.147 0.372 1.526 -4.959 3.455
rank.pricedelay 0.084 0.003 1.739 -5.117 5.071
rank.ps 0.057 0.325 2.612 -10.255 5.962
rank.roaq 0.202 0.616 4.020 -15.635 9.586
rank.roeq 0.177 0.356 3.999 -16.539 10.516
rank.roic -0.046 0.057 3.636 -16.193 9.472
rank.salecash -0.096 0.164 2.813 -8.062 8.034
rank.saleinv -0.001 0.062 1.622 -5.766 4.311
rank.salerec 0.087 0.052 1.762 -4.471 6.431
rank.sgr -0.444 -0.369 1.927 -5.787 4.566
rank.sp 0.413 0.498 3.182 -9.004 11.468
rank.std dolvol 0.352 0.223 2.785 -8.089 8.834
rank.std turn 0.365 0.128 4.411 -11.321 18.151
rank.tang 0.321 0.219 2.746 -6.846 11.271
rank.tb 0.037 0.185 2.426 -10.72 7.222
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2.5 Are the factors the same?

Due to the conceptual differences between slope factors on the one hand and differential and rank

factors on the other, as discussed in the Introduction, the correlation between the corresponding

more pure play slope factors and the other two factors is expected to be weak. This is supported

by the evidence.

First, consider Table 5 where we give the pairwise correlations between the slope and

differential factors (labeled corrsd in the table), that between slope and rank factors (labeled corrsr)

and finally between differential and rank factors (labeled corrdr) for each of the forty characteristic-

based factors (the f followed by a dot in front of the characteristic name is our notation for a factor

corresponding to that characteristic; as there are three different factors for each characteristic,

f.acc, for example, stands for s.acc, d.acc and rank.acc). One can see from the entries in the first

two columns of this table that the correlation between slope and differential and rank factors tends

to be weak.8

Table 5 Pairwise correlations between slope, differential, and rank factors.
In the table, f. followed by the characteristic name stands for the factor corresponding to that
characteristic, constructed by one of the s, d, and rank methods; corrsd is the pairwise correlation
between the s and d factors; corrsr is the pairwise correlation between the s and rank factors; and
corrdr is the correlation between the d and rank factors. The last two columns present pairwise
correlations between differential and rank factors with less pure play slope factors (which control
only for size) analogs.

factor corrsd corrsr corrdr corrdds corrrrs
more pure play less pure play

f.acc 0.248 0.266 0.831 0.733 0.936
f.age 0.452 0.501 0.826 0.865 0.981
f.agr 0.093 0.208 0.722 0.737 0.801

f.baspread 0.553 0.662 0.903 0.833 0.971
f.beta 0.809 0.819 0.978 0.974 0.996
f.bm 0.153 0.350 0.860 0.800 0.956

8Note that in Table 5, d.mve is negatively correlated with s.mve and r.mve. This is because d.mve is constructed
like SMB, with positive weights on small firms and negative weights on large firms, while these signs are flipped on
s.mve and r.mve.
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f.cash 0.133 0.143 0.957 0.929 0.982
f.cashdebt -0.007 0.020 0.758 0.568 0.83
f.cashpr 0.078 0.132 0.915 0.792 0.899

f.cfp 0.126 0.175 0.907 0.822 0.957
f.chatoia 0.131 0.337 0.630 0.460 0.845
f.chcsho 0.066 0.130 0.912 0.782 0.844

f.chempia 0.222 0.228 0.630 0.528 0.697
f.depr 0.078 0.170 0.925 0.838 0.948
f.dy 0.110 0.114 0.911 0.838 0.857
f.egr 0.081 0.084 0.714 0.676 0.779
f.ep 0.165 0.211 0.901 0.729 0.919

f.gma 0.318 0.458 0.821 0.714 0.967
f.grcapx 0.036 0.122 0.790 0.610 0.695

f.herf 0.239 0.319 0.819 0.771 0.811
f.hire 0.201 0.240 0.783 0.765 0.879

f.idiovol 0.377 0.559 0.904 0.869 0.987
f.ill 0.072 0.202 0.270 0.207 0.753

f.indmom 0.289 0.223 0.952 0.922 0.975
f.invest 0.303 0.359 0.733 0.647 0.888

f.lev 0.418 0.432 0.958 0.894 0.914
f.lgr 0.003 0.140 0.732 0.614 0.709

f.mom12m 0.291 0.364 0.911 0.903 0.969
f.mom1m 0.371 0.477 0.906 0.875 0.984

f.mve -0.412 -0.024 -0.764 0.878 0.807
f.nincr 0.364 0.467 0.730 0.716 0.939

f.operprof 0.058 0.149 0.789 0.642 0.883
f.pchgm pchsale 0.131 0.278 0.736 0.34 0.677

f.pricedelay 0.080 0.161 0.745 0.459 0.831
f.ps 0.240 0.259 0.758 0.763 0.995

f.roaq 0.345 0.344 0.855 0.786 0.937
f.roeq -0.024 -0.003 0.863 0.789 0.943
f.roic 0.137 0.184 0.817 0.721 0.854

f.salecash -0.047 -0.089 0.910 0.775 0.792
f.saleinv 0.329 0.394 0.822 0.747 0.833
f.salerec 0.014 0.059 0.786 0.541 0.653

f.sgr 0.135 0.207 0.822 0.697 0.751
f.sp 0.285 0.311 0.917 0.801 0.854

f.std dolvol 0.478 0.514 0.476 0.563 0.891
f.std turn 0.288 0.336 0.948 0.869 0.917

f.tang 0.183 0.223 0.901 0.894 0.986
f.tb 0.123 0.116 0.837 0.759 0.91

In keeping with the argument outline above, if the slope factors are less pure, the correlations

between slope factors and the other factors will tend to increase. To see this, suppose that we

were to construct slope factors that only control for size (we can call these less pure play slope

factors). Now, for each characteristic in each cross section, we can sort stocks into three groups

(top 30%, middle 40%, bottom 30%), and then include only stocks in the top and bottom groups
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in the cross-sectional regression with excess returns on the LHS and that characteristic and size on

the RHS. This would produce less pure play slope factor analogs of differential factors. Analogues

of rank factors can be made similarly by not dropping the middle 40% of the sample. We give the

pairwise correlations in the last two columns of Table 5. As expected, the correlations are much

higher. This shows that if one is going to seek value from slope factors, it is essential to construct

slope factors that are more pure play.

3 Methodology

3.1 Motivation

It seems reasonable to believe that the more pure play slope factors, due to properties isolated in

the preceding discussion, would improve the pricing of the cross section. But to confirm such a

conjecture it is not enough to take an existing factor model (say the FF6 model) and replace its

five characteristic-based factors (SMB, HML, CMA, RMW, MOM) with the corresponding s.mve,

s.bm, s.agr, s.operprof, s.mom12m, factors. This is because if we start from (say) the starting

set of 47 slope factors, the best risk factors are not necessarily s.mve, s.bm, s.agr, s.operprof and

s.mom12m. Thus, replacing FF6 with the corresponding slope factors is certainly possible, but this

does not necessarily reveal the correct differences in pricing ability of the factors constructed by

the different methods.

To show what happens if one prices with the slope, differential, and rank versions of the FF6

model, we give in Table 6, the pricing performance on a large cross-section of test assets consisting

of 1150 portfolios, 1480 equity ETFs and 6024 stocks.9 The table gives the number of test assets

9Test assets are 1150 portfolios from 5×5 sorts on size (mve) and 46 characteristics from our sample data; 1480
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that are priced by the s.ff6, d.ff6 and r.ff6 for each of the three categories of test assets. Ignoring

for the moment how we determine if a particular asset is priced (more on this methodology below),

one can see that s.ff6 outperforms d.ff6 and r.ff6 in portfolios, that d.ff6 is best for the ETFs, and

r.ff6 dominates on stocks.

Table 6 Slope, differential, and rank version of the FF6 factors: pricing performance on 1150
portfolios; 1480 ETFs and 6024 stocks. This table reports the number of assets that are priced at
the 0.75 threshold, representing (odds of 3:1 in favor), 0.667 (odds of 2:1 in favor) and 0.80 (odds
of 4:1). The factors consist of Mkt and those constructed from mve, bm, agr, operprof, and
mom12m. In the case of the slope factors, the factors control 42 other characteristics. Pricing is
based on log marginal likelihood differences of regressions with each test asset in the LHS and
factors on the RHS, without and with an intercept, as explained in the text. The results show that
replacing differential factors in the FF6 model with slope or rank factors does not uniformly
improve or worsen performance. To understand which class of factors offers better pricing, it is
necessary to find the best risk factors in each class and compare the pricing performance of the
best risk factors.

factor set # priced at 2:1 # priced at 3:1 # priced at 4:1
1150 Portfolios

s.ff6 842 732 629
d.ff6 689 517 288

rank.ff6 735 592 393
1480 ETFs

s.ff6 693 465 280
d.ff6 889 589 366

rank.ff6 821 546 342
6024 Stocks

s.ff6 4342 3009 1910
d.ff6 4363 3020 1930

rank.ff6 4503 3263 2175

On the basis of this sort of comparison, one would tend to reach the conclusion that factors

behave differently depending on the asset class and that, since there is no clear winner, one could

just continue using one’s favored construction method. As we now show, it is a mistake to simply

ETFs obtained from CRSP (share code 73) that have at least 60 months of observation between January 1989 -
December 2020; 6024 common stocks obtained from CRSP (share code 10 and 11) that have at least 60 months
of observations within January 1989 - December 2020, financial firms, firms with negative book equity, and stocks
with P/S lower than $5 are excluded.
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replace one set of factors with another set of factors in an existing asset pricing model. This

is because different factor construction methods carry different information about the underlying

characteristics, and these differences result in different SDFs (equivalently, different risk factors).

Therefore, it is important to infer the risk factors within each class of factors and then to compare

the pricing performance of these different sets of risk factors.

3.2 PAMS: Pruning - Augmentation - Model Scanning

We now describe a methodology for determining the risk factors from a large starting group of

factors. We denote this starting pool of factors by

ft = ( f1,t , f2,t , ..., fd,t)
′ , t ≤ T

where d denotes the total number of factors. We always assume that the first factor in ft is the

market factor.

Step 1: Soft Pruning

The idea behind the soft pruning step is to remove factors that are unlikely to be risk factors. The

factors that are pruned from this step are considered again in Step 2 so the pruning in Step 1 may

be called soft pruning as opposed to hard pruning. To decide if this factor is a possible risk factor

(or whether it should be pruned), we calculate

pk = Pr( fk is a risk factor|f1:T ,{ fl}l ̸=k are risk factors) , k ≤ d
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where f1:T is the sample data on the factors and { fl}l ̸=k denotes the remaining set of factors.

Before we show how this probability can be calculated, it is important to note that the idea behind

this question is to interrogate the (incremental) value of each factor, under the assumption that

every other factor is a risk factor. Intuitively, factors that have a high value of pk remain risk

factors even when all other factors are a risk factor. For this pruning step, we use a cutoff of.75. In

other words, we do not prune fk if

pk > .75

The threshold probability is arbitrary to an extent, but a value higher than 0.75 would unnecessarily

omit important factors (increasing the number of false negatives). Although there are additional

steps in which the assessments made in Step 1 are revised and updated, omitting important factors

in this step, by setting the bar too high, would lead to a misspecified pool of factors, which would

jeopardize the effectiveness of the remaining steps. This step is called the pruning step (rather than

a selection step) for a reason. Its goal is to eliminate factors that are less likely to be risk factors,

not to isolate risk factors (the latter is done in Step 3).

REMARK 2 To form cut-points, it is useful to think in terms of odds in favor of an event A vs. its

complement AC. The 0.75 threshold represents the odds of 3:1 in favor; other thresholds are 0.667

(odds of 2:1 in favor) and 0.80 (odds of 4:1). We also use the language of odds in our discussion

below.

We are now ready to show how we calculate pk. Define the two models,

M1,k : fk is a risk factor ∩ { fl}l ̸=k are risk factors
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and

M2,k : fk is not a risk factor ∩ { fl}l ̸=k are risk factors

Suppose that the prior probabilities, Pr(M1,k) and Pr(M2,k), are each 0.5. Then, by Bayes’

Theorem,

pk =
Pr(M1,k)m(f1:T |M1,k)

Pr(M1,k)m(f1:T |M1,k)+Pr(M2,k)m(f1:T |M2,k)
,

where ms,k = m(f1:T |Ms,k) (s = 1,2) are the densities of the data under the two models. These are

marginal likelihoods (i.e., the sampling densities of the data marginalized over the parameters). On

cancelation of the prior probability terms we have

pk =
1

1+ exp(−(logm1,k − logm2,k))
, k ≤ d

To complete the calculation we need to find m1,k and m2,k for all fk. These can be computed

easily from the general theory given below in the discussion of model scanning. To calculate m1,k

we estimate the model

xt = λ x + ε t ,

where xt is the entire set of factors ft , λ x is the vector of factor risk-premia and ε t is a correlated

Gaussian error. We fit this model under the prior parameters given below and calculate the marginal

likelihood (available in closed form). This gives us m1,k (note that this does not depend on k, but

we keep this dependence in the notation).
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To calculate m2,k we remove fk from xt and estimate the model

xt\ fk,t = λ x\k + ε t\k, (8)

wk,t = Γxt\ fk,t + εw·x,t (9)

where \ is the element exclusion operator, wk,t is fk,t , which by virtue of not being a risk factor

is priced by the remaining assumed risk factors. The errors are block-correlated Gaussian. Again,

under the priors given below, the marginal likelihood m2,k of this model is in closed form.

We repeat this comparison for every factor fk and denote the factors not pruned by x1.

Step 2: Augmentation

Step 2 is designed to catch any false negatives (factors that are classified as non-risk factors in Step

1 that could be risk factors). Specifically, given the set of factors in x1 we look at the remaining

factors in f . We call these

w1 = f\x1

These are the factors that were judged to be non-risk factors at the end of the (soft) pruning Step

1. But it is possible that some of these factors are risk factors. Generally, the false negatives in

this set tend to be factors whose posterior probability in Step 1 is close to 0.75 from below. The

factors whose posterior probability in Step 1 is much smaller than the threshold, say, 0.3 or below,

are generally not false negatives. Regardless, to find these false negatives, we ask a fresh question:

Which factors in w1 are not priced by x1 with a posterior probability of at least

0.75 (ie, posterior odds of 3:1 of not priced vs. priced)?
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We set the posterior probability bar at 0.75 to allow more factors to pass this threshold.10 We

calculate this posterior probability of not being priced for each factor in w1. Let a particular factor

in w1 be denoted by w j. Then, for every j, we estimate the following two Bayesian regression

models, the first one without an intercept, and the second with an intercept:

Observation eq: w j,t = β
′
0, jx

1
t + ε0, j,t , ε0, j,t ∼ N(0,σ2

0, j) , t ≤ T (10)

Prior: β 0, j ∼ N(b0, j,B0, j) , σ
2
0, j ∼ IG

(
ν0, j

2
,
δ 0, j

2

)

and

Observation eq: w j,t = α j +β
′
1, jx

1
t + ε1,t , ε1, j,t ∼ N(0,σ2

1, j) , t ≤ T (11)

Prior:
(

α j,β 1, j

)
∼ N(b1, j,B1, j) , σ

2
1, j ∼ IG

(
ν1, j

2
,
δ 1, j

2

)

where IG denotes the inverse gamma distribution. The hyperparameters of the prior distributions

are determined from a training sample using the first 30% of the sample (see Greenberg (2012) for

more on training sample priors). We estimate these models using MCMC methods and calculate

the marginal likelihood of each model in this comparison using the method of Chib (1995), based

on the output of the MCMC simulation.

If we let m j,0 denote the marginal likelihood of the model without an intercept, and m j,1 denote

the marginal likelihood of the model with the intercept and then the posterior probability that w j is

not priced by x1 given the data on the factors is

Pr(w j is not priced by x1|f1:T ) =
1

1+ exp
(
−
(
logm j,1 − logm j,0

))
10In a different context, and with a different aim, Chib, Zhao, and Zhou (2022) also use a not priced test, but to

select genuine anomalies from a large pool of anomalies, given a collection of risk factors.
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If this posterior probability is at least 0.75 (i.e., posterior odds of not being priced is 3:1), we put

w j in the set w2
np (where the superscript 2 stands for Step 2 and np for not-priced).

We assemble the factors x1 and w2
np in the set f2.

Step 3: Model Scanning

The purpose of Step 3 is to find the best risk factors from the set f2 =
{
x1,w2

np
}

by exhaustively

estimating models with all possible combinations of risk factors and non-risk factors. This step

can be seen as screening out any false positives that may be present in f2.

Specifically, the jth model in this scan is defined as

x j,t = λ x, j + εx, j,t , (12)

w j,t = Γ jx j,t + εw·x, j,t , (13)

consisting of the risk factors x j,t : kx, j × 1, and the complementary set of factors (the non-risk

factors) w j,t : kw, j ×1, and the errors are block independent Gaussian

 εx, j,t

εw·x, j,t

∼ NK

0,

Ωx, j 0

0 Ωw·x, j


 , (14)

These splits are formed from the factors in f2. Since the number of factors in f2 is typically much

smaller than d (the number of initial factors), the number of models estimated and compared in

this scan is manageable. With abuse of notation, let d denote the dimension of f2. There are

therefore J = 2d −1 such splits (assuming that the risk factor set cannot be empty). Each of these

combinations defines a particular asset pricing model M j, j = 1, ...,J.
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Let

θ j = (λ x, j,Ωx, j,Γ j,Ωw·x, j)

denote the parameters of M j. Priors, for every j, are given by

π(θ j|M j) = π(Ωx, j,Γ j,Ωw·x, j|M j)π(λ x, j|M j,Ωx, j,Γ j,Ωw·x, j) (15)

where

π(Ωx, j,Γ j,Ωw·x, j|M j) = c|Ωx, j|−
2kx, j−k+1

2 |Ωw·x, j|−
k+1

2 ,

π(λ x, j|M j,Ωx, j,Γ j,Ωw·x, j) = Nkx, j(λ x, j|λ x, j,0,κ jΩx, j),

and Nd(·|µ,Ω) is the d-dimensional multivariate normal density function with mean µ and

covariance matrix Ω. These are the priors in Chib, Zeng, and Zhao (2020). They arise as a special

case of the priors in Chib and Zeng (2020).

Note that in the model space, there is one model, the full model, in which all factors are

in x; thus w is empty. Letting this be the first model, we get from the above that its prior is

π(Ωx,1|M1) = c|Ωx,1|−
K+1

2 .

Under these priors and the sampling density of the factors given the parameters, the model

marginal likelihoods, defined as the integral of the sampling density over the parameters, are

available in closed form. In particular, we have

logm1(f1:T |M1) =−T k
2

logπ − k
2

log(T κ1 +1)− T
2

log |Ψ1|+ logΓd

(
T
2

)
, (16)
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and

logm j(y1:T |M j) =−
T kx, j

2
logπ −

kx, j

2
log(T κ j +1)−

(
T + kx, j −d

)
2

log |Ψ j|+ logΓkx, j

(
T + kx, j −d

2

)
−

(d − kx, j)(T − kx, j)

2
logπ −

(
d − kx, j

)
2

log |W ∗
j |−

T
2

log |Ψ∗
j |+ logΓd−kx, j

(
T
2

)
, j > 1,

(17)

and

Ψ j =
T

∑
t=1

(x j,t − λ̂ x, j)(x j,t − λ̂ x, j)
′+

T
T κ j +1

(
λ̂ x, j −λ x j0

)(
λ̂ x, j −λ x j0

)′

W ∗
j =

T

∑
t=1

x j,tx
′
j,t , Ψ

∗
j =

T

∑
t=1

(w j,t − Γ̂ jx j,t)(w j,t − Γ̂ jx j,t)
′.

Note that the variables in the hat in the above expressions are the least squares estimates calculated

using the estimation sample, and Γd(·) denotes the d dimensional multivariate gamma function.

If we give each model in the model space the prior probability

Pr(M j) = 1/J (18)

then from Bayes theorem one gets that the posterior model probability of M j is

Pr(M j|f1:T ) =
1

1+
J
∑

l=1,l ̸= j
exp

(
−
(
logm j(f1:T |M j)− logml(f1:T |Ml

)
)
) (19)

We rank models according to these posterior probabilities. Let the model that has the largest log

marginal likelihood be M j∗ . Then the risk factors in this model, namely x j∗ , are considered the

best risk factors.
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Figure 1 Number of significant characteristics (|t-ratio| > 2.5) in month-by-month cross-sectional
regressions of firm-level excess returns on lagged standardized characteristics.

4 Evidence

For motivation, it can be insightful to run cross-sectional regressions of returns on lagged

standardized characteristics to see which characteristics are significant in such regressions, and

how that significance changes over time.

In Figure 1, we plot the number of significant characteristics (including the constant)

in monthly regressions of excess firm returns on standardized lagged characteristics, where

significance is measured by |t-ratio| > 2.5. What the plot shows is that the number of significant

characteristics varies from a minimum of one to a maximum of seventeen and that there is

considerable variation in this number across months. If there was no variation at all in this

number, we might expect that, at least for slope factors, the risk factor discovery procedure would

discover that many risk factors and that these would be the ones that correspond to the significant

characteristics.

For the data at hand, given the variability over months, it is difficult to determine from such
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a calculation which factors and how many would end up being risk factors. This connection is

even more strained for differential and rank factors because these factors capture the influence of

several characteristics at once, as discussed above. However, the somewhat long right tail of the

distribution of significant characteristics suggests that 10-20 risk factors may be needed to price

the cross section.

4.1 Step 1

To avoid repetition, we use the example of slope factors to detail the risk factor discovery process.

The data on these factors are

fs,t = (Mktt ,s.acct ,s.aget ,s.agrt , ...,s.tbt), t = 1,2, ...,T

and the goal is to use these data to learn about the factors that are in the SDF.

As discussed above, the PAMS procedure involves three steps. Step 1 is a dimension reduction

step. Factors that are unlikely to be risk factors are soft-pruned before the model scanning step.

For easy replicability, we have packaged Step 1 in R code with the simple call x1 = Step1(data

= Sf,trainpct = .3,workers = 25,probcut = .75), where the first argument takes in the

slope factor data.frame object, the second argument directs the function to use the first 30% of

the sample to fix the prior hyperparameters, the third argument specifies the number of cores for

parallel processing and the last argument sets the posterior probability cutoff to determine x1, the

factors that are not pruned. The highly optimized computations coded in C++ take 14.23 seconds

on a Macbook Pro computer with an M1 Max chip.

We give the results in Figure 2. It is clear from this plot that the probability cut-point of 0.75
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Figure 2 Step 1: The posterior probability that s.j (as j runs through the 48 factors) is a risk factor, given
the data and all other factors are risk factors. The horizontal line has a probability cut-value of 0.75. Factors
that have a posterior probability exceeding this threshold are not pruned.

effectively divides the set of 48 factors into two distinct groups. Eighteen factors, namely,

x1
s =(Mkt,s.agr,s.baspread,s.beta,s.bm,s.cash,s.cashdebt,s.chcsho,s.chempia,s.egr,

s.hire,s.invest,s.lgr,s.mom1m,s.mve,s.roic,s.sgr,s.tang)

have a posterior probability that exceeds the threshold, where the subscript s is the label for slope

factors. These are the factors that are not pruned in Step 1. The figure shows that for each of the

remaining 30 slope factors, the posterior probability of being a risk factor, given the rest are risk

factors, is much lower than the threshold and are, therefore, soft pruned. Recall that soft pruning

is not final. Factors that are soft-pruned are re-examined in Step 2.

REMARK 3 As one can observe from Figure 2, the composition of x1
s is robust to a reduction in

the threshold to, say, 0.67 (for 2:1 odds). However, going in the other direction would reduce the

cardinality of x1
s , and this would not be desirable since the potential risk factors would probably be
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trimmed. Even though it is possible that such pruned risk factors (false negatives) may be identified

in Step 2, this may not happen because the pricing test conducted in Step 2 would be less effective

if the RHS variables x1
s used in that test came in misspecified. Our experiments conducted on many

simulated data sets confirm this guidance. The probability threshold can be reduced from 0.75 but

should generally not be adjusted upward.

4.2 Step 2

The next step in the discovery procedure is to examine the thirty pruned slope factors of Step

1 to determine which of these thirty can or cannot be priced by x1
s . We have implemented

this pricing test in another R function called wnp2 = pricing (x1 = x1, data = data,

workers = 25), where the first argument inputs the factors that come out of Step 1, and the

second and third arguments are as in Step 1. This function goes through the factors in the factor

data set that are not in x1
s and for each of those factors fits the two Bayesian regression models

described above by MCMC methods, with priors determined from a training sample using 15%

of the data, and the marginal likelihoods of every model computed by the method of Chib (1995).

The function returns the names of the factors that are not priced by x1
s at a minimum of 3:1 odds

(posterior probability of at least 0.75).

On applying this function, with a run-time of 9.7 seconds on a Macbook Pro M1 Max computer,

we get that

w2
s.np = (s.acc, s.ill, s.mom12m, s.nincr, s.std dolvol, s.std turn)

are the six out of thirty factors that are not priced by x1
s . Therefore, at the end of the two steps our

set of potential risk factors consists of x1
s augmented with the six factors in w2

s.np, for a total of

twenty-four out of forty-eight factors.
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4.3 Step 3

In the last step of the discovery procedure, we take the factors

f2
s =

{
x1

s ,w
2
s.np

}
and estimate and compare the 16.77722 million possible splits of f2

s into risk factors and non risk

factors. Although, undoubtedly, this systematic estimation of all possible splits is computationally

intensive, it represents a reliable way of removing any false positives and isolating the risk factors

that are best supported by the data.

In practice, one can reduce the computational intensity of model scanning (without any change

in the final answer) by including some factors from f2
s in all models. The idea is to look for

factors that are almost certain to be among the best of 16.77722 million models. Such factors can

be found by applying the calculation of Step 1, but this time to the factors in f2
s . By setting a

very high inclusion probability threshold of 0.995 one can ensure that one finds just those factors

that are certain to be in the final model. In the current problem, this calculation shows that {Mkt,

s.baspread, s.chcsho, s.invest, s.mve} each has a posterior probability greater than 0.995 of being

risk factors, given that the rest of the factors in f2
s are risk factors. Therefore, the model scan can

be performed on the subset of models that contain these five factors as risk factors. The dimension

of this restricted model space is 219 − 1 = 524,287, which is smaller than the entire model space

by a factor of 32.

We have coded an R function to perform these computations efficiently and quickly. It has the

simple call Step3(data=data,x1=x1,wnp2=wnp2,mustinclude=TRUE,probformustinclude=.995,

trainpct=.3,workers=25), where the mustinclude argument signals that those factors with
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probformustinclude greater than 0.995 should be held fixed in every model combination. For

this problem, this scan takes about 31 minutes on a Macbook Pro M1 Max computer. In contrast,

the scan with mustinclude = FALSE takes approximately 16 hours and produces exactly the same

final best model.

These computations show that the SDF best supported by the evidence contains the slope

factors

x∗
s =(Mkt, s.acc, s.agr, s.baspread, s.beta, s.bm, s.cash, s.chcsho, s.chempia, s.egr

s.hire, s.ill, s.invest, s.lgr, s.mom1m, s.mve, s.nincr, s.roic, s.sgr, s.std turn)

While twenty risk factors may seem non-standard, it is a consequence of the more pure play

property. Since each factor is purged of the influence of a large number of other characteristics,

more of these factors are needed in the SDF.

In Table 7 we report the first two centered moments of the marginal posterior distributions of

the factor risk premia λ
∗ and the market price of factor risks (the SDF loadings) b∗. The parameters

are starred to emphasize that these are summaries of the risk factors in the best model. From the

table one can see that 19 of the 20 twenty market prices of factor risks have an absolute value of

the posterior mean more than twice bigger than the posterior sd. Fewer than 19 factor risk premia

are significant in the same way, but this is less important than the significance of the market price

parameters.
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Table 7 Slope factor SDF: Posterior estimates of the factor risk premia λ
∗ and market prices of

factor risks b∗ of x∗
s , the 20 slope risk factors.

This table shows the posterior estimates (mean and standard deviation) of the factor risk premia
λ
∗ and the SDF coefficients b∗ of the slope risk factors in the best model from Step 3 of the

PAMS discovery method. SDF loadings with 95% posterior credibility intervals excluding zero
are marked in bold. The data runs from January 1989 to December 2020.

λ
∗ b∗

x∗
s Mean Std Mean Std

Mkt 0.682 0.274 0.119 0.025
s.acc -0.079 0.041 -0.205 0.111
s.agr -0.054 0.027 -0.926 0.269
s.baspread -0.125 0.044 -0.533 0.122
s.beta -0.049 0.047 -0.389 0.136
s.bm 0.055 0.020 0.800 0.243
s.cash 0.055 0.025 0.435 0.197
s.chcsho -0.031 0.015 -1.319 0.329
s.chempia 0.038 0.098 -0.144 0.068
s.egr -0.025 0.019 -0.917 0.269
s.hire -0.057 0.044 -0.389 0.145
s.ill 0.131 0.023 0.729 0.209
s.invest -0.012 0.020 -0.935 0.274
s.lgr 0.002 0.017 -0.759 0.354
s.mom1m -0.133 0.041 -0.258 0.116
s.mve 0.001 0.016 -0.754 0.307
s.nincr 0.042 0.009 1.523 0.492
s.roic -0.264 0.117 -0.114 0.042
s.sgr -0.044 0.019 -0.494 0.250
s.std turn -0.038 0.025 -0.402 0.185
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4.4 Risk factor discovery: Differential and Rank factors

Suppressing details to save space, PAMS applied to the differential and rank factors reveals 14 and

19 risk factors, respectively. These are

x∗
d =(Mkt, d.acc, d.agr, d.beta, d.grcapx, d.herf, d.hire, d.mve,

d.operprof, d.pchgm pchsale, d.roaq, d.sgr, d.std turn, d.tb)

x∗
rank =(Mkt, rank.agr, rank.bm, rank.cash, rank.cashdebt, rank.cashpr, rank.cfp, rank.depr,

rank.herf, rank.indmom, rank.lgr, rank.mom1m, rank.mve, rank.operprof,

rank.pricedelay, rank.ps, rank.roaq, rank.sgr, rank.tb)

Table 8 shows the posterior distribution of the factor risk premia λ
∗ and the SDF loadings b∗

of these differential and rank risk factors. Most of the SDF loadings are significant in the Bayesian

sense.

We collect the different sets of risk factors in Figure 3, with the characteristics labeled on the x-

axis and the risk factors indicated by points, colored red for slope, green for differential and blue for

rank risk factors. Though there is some overlap, the risk factor sets are broadly different.11 Thus,

the method of factor construction matters for which risks are captured. To our knowledge, this is

the first time such a result has been documented in the literature. Thus, the factor construction

method should not be an off-handed choice.
11It is not the aim of this paper to provide a theoretical justification for these risk factors. However, the empirical

finding that the SDF varies depending on how the factors are constructed has practical implications. For example, to
check any factor-based economic theory of asset pricing, it would not be enough to base that confirmation on factors
constructed by one method. Because what may be true with differential factors may not be true with slope factors, and
vice versa.
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Table 8 Differential and rank factor SDFs: The posterior estimates of the factor risk premia λ
∗

and market prices of factor risks b∗. There are fourteen factors in the differential factor SDF and
nineteen in the rank factor SDF.
This table shows the posterior estimates (mean and standard deviation) of the factor risk premia
λ
∗ and SDF coefficients b∗ of the differential and rank risk factors in the best model from Step 3

of the PAMS discovery method. Market prices of factor risks with 95% posterior credibility
intervals excluding zero are marked in bold. The data runs from January 1989 to December 2020.

λ
∗ b∗ λ

∗ b∗

x∗
d Mean Std Mean Std x∗

r Mean Std Mean Std

Mkt 0.682 0.270 0.165 0.029 Mkt 0.680 0.273 0.222 0.035
d.acc -0.360 0.127 -0.070 0.045 rank.agr -0.66 0.132 -0.375 0.106
d.agr -0.365 0.112 -0.256 0.074 rank.bm 0.329 0.175 0.426 0.114
d.beta 0.189 0.402 -0.088 0.034 rank.cash 0.444 0.251 0.410 0.090
d.grcapx -0.161 0.103 0.108 0.056 rank.cashdebt -0.038 0.207 -0.365 0.121
d.herf -0.091 0.142 -0.269 0.045 rank.cashpr -0.094 0.184 0.572 0.128
d.hire -0.150 0.137 0.125 0.074 rank.cfp 0.205 0.268 0.141 0.086
d.mve 0.782 0.654 0.034 0.010 rank.depr 0.395 0.212 -0.241 0.092
d.operprof 0.29 0.102 0.202 0.053 rank.herf -0.085 0.137 -0.356 0.072
d.pchgm pchsale 0.226 0.091 0.118 0.058 rank.indmom 0.485 0.257 -0.050 0.025
d.roaq 0.413 0.217 0.184 0.049 rank.lgr -0.379 0.081 0.364 0.129
d.sgr -0.281 0.129 -0.185 0.067 rank.mom1m -0.767 0.282 -0.060 0.024
d.std turn 0.443 0.294 0.136 0.043 rank.mve -0.520 0.260 -0.370 0.065
d.tb 0.233 0.133 0.117 0.053 rank.operprof 0.163 0.123 0.365 0.088

rank.pricedelay 0.072 0.107 0.151 0.071
rank.ps 0.019 0.165 0.539 0.128
rank.roaq 0.161 0.254 0.287 0.09
rank.sgr -0.415 0.113 -0.237 0.085
rank.tb 0.064 0.150 0.254 0.075

5 Pricing of the cross section

To understand the pricing capabilities of the different sets of risk factors, we consider a large

collection of assets consisting of portfolios, ETFs and stocks. These are the same test assets used

in Table 6 above. We also discuss the pricing of existing risk factors in prevalent asset pricing

models.

We primarily apply a Bayesian procedure to infer which assets are priced though we also
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Figure 3 Risk factors within each factor class. There are 20 slope risk factors (colored red), 14 differential
risk factors (colored green), and 19 rank risk factors (colored blue), as described in the text. The underlying
characteristics are labeled on the horizontal axis.

consider the frequentist test for the null that the intercept is zero. The Bayesian pricing

methodology is the same as in Step 2 of the discovery procedure, with the change that the variable

w j in equations (10) and (11) now stands for the excess return of the jth test asset. If we let m j,0

denote the marginal likelihood of the regression model (10) with w j on the LHS and the risk factors

on the RHS without an intercept, and m j,1 denote the marginal likelihood of the model (11) with

w j on the LHS and the risk factors on the RHS with an intercept, then the posterior probability that

w j is priced by the risk factors x∗
f , f ∈ {s,d,r}, given the data on the risk factors is

Pr(w j is priced by x∗
f |f1:T ) =

1
1+ exp

(
−
(
logm j,0 − logm j,1

))
It can be checked that w j is priced by x∗

f with at least 2:1 odds, if

d j,01 =
(
logm j,0 − logm j,1

)
> 0.69
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It is priced at posterior odds of 3:1 if d j,01 > 1.09 and priced at posterior odds of 4:1 if d j,01 > 1.38.

Once again, the prior hyperparameters are based on the initial 15% of the data, with the following

qualifications. If the sample size of a certain asset is less than 100 (as in the case of some small

stocks), we use the first 40% of the data as a training sample. If the available sample size is

between 100 and 150, we use the first 30% of the sample as a training sample. When the sample

size exceeds 150, the most common case, the first 15form the training sample prior. Then, for each

asset, we estimate two models (one without an intercept and one with) to obtain evidence about

pricing versus nonpricing. This evidence is summarized by the number priced vs. not priced at

2:1, 3:1, and 4:1 posterior odds.

5.1 Portfolios, ETFs and Stocks

The pricing performance of the different sets of risk factors is given in Table 9. To benchmark the

results, we also include the pricing performance of the FF6 factors of Fama and French (2018) (the

FF6 factors are constructed using the differential / sorting method, downloaded from the Kenneth

French data library).

Consider first the case of portfolios (double-sorted portfolios) that we have constructed from

our sample. In particular, for each of our 46 characteristics (excluding size), we construct 5× 5

sorts on size and characteristic, leading to 1150 (= 46×25) value-weighted portfolios. Under the at

least 2:1 posterior odds threshold criteria, the slope risk factors price 996 of these portfolios, while

the differential and rank factor models price 778 and 763, respectively, a substantial difference in

pricing ability. Under the even more demanding 4:1 posterior odds threshold, the slope risk factors

price 697 of these portfolios, compared to 342 and 542 by the differential and slope risk factors,

respectively. Each set of risk factors provides better pricing than the benchmark FF6 risk factors.
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Consider next the sample of 1480 ETFs that we have assembled from CRSP (share code 73),

spanning February 1993 (the earliest month data on ETFs is available) to December 2020. Within

this period, each ETF has at least 60 months of data. ETFs are diversified portfolios that are

liquid, transparent, and inexpensive to trade. As a result, the premium of these assets is likely to

be determined by exposure to the common non-diversifiable sources of risk manifested in the risk

factors. Again, under the least 2:1 posterior odds in favor of pricing criteria, one can see that slope

risk factors outperform the other sets of risk factors.

Finally, we consider pricing a sample of 6024 stocks (CRSP sharecodes 10 and 11). The

sample period is January 1989 to December 2020, and we ensure that there are at least 60 months

of observations within this time frame on any given stock. Financial firms and firms with negative

book equity are excluded. Stocks with prices per share lower than $5 are also excluded. In our

view, it is useful to benchmark the pricing performance of stocks given that these assets tend to be

more volatile than portfolios, which poses a greater hurdle.

Table 9 gives performance evidence. As can be seen from the table, under the (default)

2:1 criteria, the slope risk factors price 4883 stocks, and the differential and rank risk factors

price 4738 and 4801 stocks, respectively, and the FF6 risk factors price 4331 stocks. These

results provide evidence that one can price more of the cross-section of stocks (relative to the

differential/sorted construction method) by adopting either the rank construction method (for

some improved performance), or the slope construction method (for even greater improved

performance). These gains can be achieved with effectively zero marginal effort.
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Table 9 Slope, differential and rank risk factors: pricing performance on 1150 portfolios; 1480
ETFs and 6024 stocks. This table reports the number of assets that are priced at 0.75 threshold
representing (odds of 3:1 in favor), 0.667 (odds of 2:1 in favor), and 0.80 (odds of 4:1). x∗

s denote
the twenty slope risk factors; x∗

d denote the 14 differential risk factors, and x∗
rank denote the 19

rank risk factors discovered by the 3-step Bayesian methodology developed in the paper. Whether
an asset is priced is determined by the log marginal likelihood differences of regressions with
each test asset on the LHS and respective risk factors on the RHS, without and with an intercept,
as explained in the text. We include the pricing results of the FF6 risk factors as a reference. The
results show that slope risk factors uniformly price more of these test assets than differential, rank
and FF6 risk factors.

factor set # priced at 2:1 # priced at 3:1 # priced at 4:1
1150 Portfolios

x∗
s 996 867 697

x∗
d 778 566 342

x∗
rank 763 640 542
FF6 460 328 202

1480 ETFs
x∗

s 1190 1036 854
x∗

d 1058 788 555
x∗

rank 1012 806 597
FF6 870 561 343

6024 Stocks
x∗

s 4883 3983 3071
x∗

d 4738 3528 2378
x∗

rank 4801 3821 2887
FF6 4331 2891 1789

5.2 Pricing of common risk factors

We conclude our evaluation of pricing power using the risk factors in the FF6 Fama and French

(2018), Q5 Hou, Mo, Xue, and Zhang (2021), and DHS Daniel, Hirshleifer, and Sun (2020) models

as test assets. The pricing methodology is the same: the FF6, Q5, and DHS factors are on the

LHS of regressions, with the slope/differential/rank factors on the RHS. We then fit these models

without an intercept and with an intercept and calculate d01 = logm0− logm1, the difference in the

respective log marginal likelihoods. Furthermore, we also estimate the model with an intercept by

OLS and calculate α̂ , the OLS estimate of the intercept and the associated absolute value of the
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t-statistic.

Table 10 Slope/differential/rank risk factors: pricing of FF6, Q5 and DHS risk factors. The
columns labeled α̂ have the intercept estimates in regressions with the factor in the LHS and the
risk factors x∗

f in the RHS; the columns labeled |t| has the absolute value of the OLS estimates of
the intercept; and the columns labeled d01 have the difference in the log marginal likelihoods of
the model (equation (10)) without an intercept, and the log marginal likelihood of the model
(equation (11)) with an intercept: these log marginal likelihoods are computed by the method of
Chib (1995) under priors based on the first 15% of the data. A factor is priced at posterior odds of
2:1 if d01 > 0.69. These are marked in bold.

α̂ |t| d01 α̂ |t| d01 α̂ |t| d01
s risk factors x∗

s d risk factors x∗
d rank risk factors x∗

rank
SMB 0.14 1.12 1.00 -0.11 0.99 0.72 0.25 1.48 -0.56
HML -0.11 0.58 0.72 0.12 1.05 2.25 -0.22 2.10 0.00

RMW 0.12 0.88 1.04 0.05 0.57 0.95 -0.01 0.11 1.43
CMA 0.20 1.73 0.79 0.02 0.27 0.95 -0.03 0.33 1.38
MOM 0.39 1.43 1.79 -0.10 0.43 0.71 -0.05 0.30 1.31

ME 0.07 0.49 1.64 -0.14 1.28 0.43 0.18 1.07 0.11
IA 0.20 1.63 1.24 0.00 0.03 1.15 -0.09 0.95 0.99

ROE 0.30 2.09 4.72 0.17 1.83 1.74 0.12 1.13 2.09
EG 0.50 4.55 -3.85 0.37 3.83 -1.88 0.29 2.45 -0.20

PEAD 0.47 3.75 -1.60 0.44 3.61 -1.44 0.40 3.13 -0.97
FIN 0.31 1.45 1.34 0.38 2.74 -0.42 0.23 1.49 1.59

The results are given in Table 10. The key columns are the third, sixth, and ninth. Focusing on

the slope factors panel, one sees that d01 exceeds 0.69 for all risk factors except for EG in the Q5

model and PEAD in the DHS model. Therefore, slope risk factors can price nine of these common

risk factors at posterior odds of 2:1. Reading through, one sees that whenever d01 is greater than

0.69, the |t| statistic in that row is small, and when d01 < 0.69, the |t| statistic in that row is large.

In contrast, differential risk factors cannot price four of the eleven common risk factors at

posterior odds of 2:1. These are ME and EG in the Q5 model and PEAD and FIN in the DHS

model. The rank risk factors perform even less well. These risk factors cannot price five of the

11 at posterior odds of 2:1, namely, SMB and HML in the FF6 model, ME and EG in the Q5

model, and PEAD in the DHS model. Thus, the evidence shows that slope risk factors outperform
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differential and rank risk factors in pricing a large collection of test assets and pricing existing risk

factors.

6 Importance of more pure play

In Section 3.1 we had shown that the short-cut approach of replacing risk factors in an existing

model, say those in the FF6 model, is misleading about the relative worth of these three different

factor construction methods. The correct way to see the performance of the slope factors is to

compare the respective risk factors, as we did in the previous section.

Additionally, it is important to note that to realize the potential of slope factors, these factors

must be constructed from cross-sectional regressions that control for a range of characteristics. If

this is not done, the factors would be less pure play. For illustration, and to see how the SDF is

based on less pure play slope factor prices, we construct less pure play slope factors in two different

ways.

In the first way, for each standardized characteristic c j, j = 1,2, ...,46, other than mve, we run

the cross-sectional regressions

ri,t = α j,t +β 1, j,tci, j,t +β 2, j,tc
2
i, j,t +β 3,tmvei,t +β 4,tmve2

i,t + ε i,t

and for the mve characteristic, we run the cross-sectional regression

ri,t = α t +β 1,tmvei,t +β 2,tmve2
i,t + ε i,t

Then, the slope factor for c j in month t is the average of the estimated β 1, j,t and β 2, j,t , and the
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slope factor for mve in month t is the average of the estimated β 1,t and β 2,t . We denote the less

pure play slope factors made this way as xs.np1, where the np label stands for non pure-play.

In a second way, we augment each of the above regressions with the five characteristics in

the FF6 model: mve, bm, agr, operprof, and mom12m; each entered quadratically. Once again,

the slope factor for a particular characteristic for a given month is the average of the estimated

coefficients multiplying that characteristic’s linear and quadratic terms. We denote the resulting

less pure-play slope factors as xs.np2.

Note that, in general, less pure play slope factors can be constructed from a limited set of

starting characteristics. However, less pure play slope factors trade off limited data requirements

for performance.

Because more pure play and less pure play slope factors are different objects, the SDF based

on less pure play risk factors will differ from the SDF we found above with more pure play risk

factors. Specifically, after applying the PAMS method to the two sets of forty-seven less pure play

slope factors as described above, xs.np1 and xs.np2, we find that the SDFs best supported by the

data contain the factors

x∗
s.np1 =(Mkt, s.np1.acc, s.np1.cash, s.np1.chcsho, s.np1.lgr,

s.np1.mom1m, s.np1.mve, s.np1.pricedelay, s.np1.sgr),

x∗
s.np2 =(Mkt, s.np2.agr, s.np2.chcsho, s.np2.herf, s.np2.idiovol, s.np2.invest,

s.np2.lev, s.np2.mom1m, s.np2.mve, s.np2.std dolvol, s.np2.tang),

respectively. Nine factors from the xs.np1 set are identified as risk factors while eleven factors from

the xs.np2 set are identified as risk factors. It should be noted that this result does not imply that
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these risk factors are capturing nine or eleven underlying risks. Because the characteristics are

correlated, even after controlling for the FF6 characteristics, and these factors did not control for

other characteristics, these selected characteristics each represent the risk emanating from other

correlated characteristics, albeit coarsely. As a result, such factors cannot capture some risks,

or others can only be captured incompletely. This weakness is manifested in degraded pricing

performance.

Table 11 has the pricing results. One can see that at the default greater than 2:1 posterior odds

threshold, the first set of less pure play slope risk factors x∗
s.np1 price 682 out of 1150 portfolios,

921 out of 1480 ETFs, and 4551 out of 6024 individual stocks. Looking back at Table 9, these

numbers are uniformly lower than the pricing numbers from the more pure play risk factors, x∗
s ,

x∗
d, and even the rank risk factors, x∗

r . Meanwhile, the second set, x∗
s.np2, prices 838 portfolios,

1096 ETFs, and 4715 stocks at the 2:1 posterior odds threshold. This improved performance shows

that one can produce better slope factors even if those factors are constructed using a limited set

of controls (here bm, agr, operprof and mom12m). The risk factors x∗
s.np2 even outperform x∗

d, but

under perform the more pure play x∗
s , as can be seen from Table 9. Thus, performance is closely

connected to the more pure play property of slope factors.

7 Conclusion

In this paper, we have studied slope factors about differential/sorted and rank factors and reached

several important conclusions for empirical asset pricing. First, we have shown that slope factors

provide value when they are more pure play, i.e., when the slope factors are constructed from FM

regressions that are broadly specified (in terms of having many RHS characteristics as controls).

In this way, the resulting slope factors are purged of the effects of more characteristics.
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Table 11 Less pure play slope risk factors: pricing performance on 1150 portfolios; 1480 ETFs
and 6024 stocks. This table reports the number of assets that are priced at 0.75 threshold,
representing (odds of 3:1 in favor), 0.667 (odds of 2:1 in favor), and 0.80 (odds of 4:1). There are
nine non-pure-play slope risk factors x∗

s.np1 and eleven non-pure-play slope risk factors x∗
s.np2

discovered by the Bayesian PAMS methodology developed in the paper. Whether an asset is
priced is determined by the log marginal likelihood differences of regressions with each test asset
on the LHS and respective risk factors on the RHS, without and with an intercept, as explained in
the text.

factor set # priced at 2:1 # priced at 3:1 # priced at 4:1
1150 Portfolios

x∗
s.np1 682 510 304

x∗
s.np2 838 696 516

1480 ETFs
x∗

s.np1 921 663 412
x∗

s.np2 1096 845 589
6024 Stocks

x∗
s.np1 4551 3225 2141

x∗
s.np2 4715 3601 2564

Second, we show that it is not enough to take an existing asset pricing model, say the FF6, and

replace its factors with slope factors to realize the value of slope factors. To realize the potential of

slope factors, one should determine which slope factors from the starting pool of slope factors are in

the SDF. To provide evidence of this, we have developed a new risk factor discovery methodology,

PAMS, which is short for pruning, augmentation, and model scanning. The PAMS methodology

is a general tool for risk factor discovery that can be used beyond the context of this paper.

Third, we show that the SDF best supported by the data varies by factor construction method.

The PAMS methodology, applied to each set of factors, shows that the slope factor SDF has twenty

risk factors, the differential factor SDF has fourteen risk factors, and the rank factor SDF has

nineteen risk factors. Thus, the method of factor construction matters for which risks are captured.

To our knowledge, this is the first time such a result has been documented in the literature. Thus,

the factor construction method should not be an off-handed choice. It has far-reaching implications
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for understanding the risks embedded in the cross-section of expected returns.

Fourth, on an extensive set of test assets consisting of 1150 portfolios, 1480 ETFs and

(importantly) 6024 stocks, we have provided evidence that the slope factor SDF provides uniformly

improved pricing of the cross section than the differential and rank factor SDFs. Since this finding

is based on a broader and more representative collection of test assets than the norm, this result

engenders confidence that the result is not an artifact of the test assets. We also document that

slope risk factors outperform common (extant) risk factors in pricing. We relate this improved

performance to the more pure play property and show that less pure play factors have degraded

performance. These findings on pricing are a strong argument for adopting slope factors in

empirical asset pricing.

Data, software, and code for reproducing the results in this paper are available on request.
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