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Climate Risk Preparedness and the Cross Section

Abstract

We develop a theoretical framework to examine the relationship between a firm’s climate

risk preparedness and its investment returns within a two-date stochastic general equilibrium

production-based asset pricing model. Our analysis shows that, in equilibrium with an interior

solution, a firm’s initial climate preparedness is positively correlated with the expected return on

equity. We empirically test this theoretical model using a comprehensive set of assets, including

stocks, ETFs, anomalies, and portfolios sorted by characteristics. The empirical findings support

our theoretical predictions, highlighting the significant role that the constructed preparedness factor

plays in explaining the cross-sectional variation in asset returns.

JEL Classification: G11, G12, G14
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1 Introduction

In recent years, the growing body of scientific evidence on climate change and the large economic

and ecological impacts of climate-related events around the world have stimulated numerous

empirical and theoretical studies on the effects of climate on financial markets.1 While there has

been much analysis on how demand side portfolio choices can mitigate climate risks for investors,

and the impact these portfolio choices have on financial market prices and returns (see, for example,

Barnett, Brock, and Hansen (2020), Engle, Giglio, Kelly, Lee, and Stroebel (2020) and Bolton

and Kacperczyk (2023)), the impact on the cross-section of returns of actions taken by firms to

mitigate or prepare for climate change has been little studied. Specifically, we ask the question

whether investment in climate risk preparation, with the aim of making operations less vulnerable

to climate risk, has a positive or negative impact on expected equity returns.2

We view this paper as the first theoretical attempt to analyze the link between firm climate

preparation and investment returns. It is undeniable that firms are exposed to climate risks (see, for

example, Engle et al. (2020)), but it is unclear what incentives they have to reduce this exposure.

In this paper, we develop a model in which a firm can undertake two types of investments, one in

physical capital and the other to enhance preparadeness. Our aim is to use this model to quantify

the costs and payoffs to investment in preparation and mitigation. It is clear that investment in

preparation is an expense that is not likely to improve productivity, at least in the short term.

Therefore, this investment would increase costs and lower profits, with a negative impact on

1The economic repercussions of climate change on the corporate world are profound and expansive. Stroebel and
Wurgler (2021) show that regulatory risk is the main climate risk for companies and investors over the next five years,
and physical risk is identified as the main risk over the next 30 years. The UN Environment Program projects that,
globally, the expense required for companies to adapt to climate repercussions will soar to between $140 and $300
billion annually by the end of this decade (United Nations Environment Programme 2021).

2Projections by S&P Global indicate that, should adaptive measures not be implemented, the financial toll exerted
by the physical manifestations of climate change will align with current average expenses by the mid-21st century
(S&P Global 2021). Research also shows that economic losses due to climate pollution now eclipse the profits of the
most polluting sectors, representing 89% of their total revenue (Energy Policy Institute at the University of Chicago
2021)). Furthermore, an EY survey underscores a strategic pivot toward improving climate action among corporations,
with 61% of respondents indicating plans to increase their investment in climate change initiatives in the following
year. In particular, a quarter of these entities intend to significantly increase their expenditures (EY 2022). This
evidence illustrates the growing financial impact of climate change on businesses and the increasing investments in
adaptation, compliance, and mitigation efforts.
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expected returns. However, such an investment would pay off in the event of a future climate

event. A more resilient or better prepared firm would experience a smaller output disruption and

higher profits in the bad state of the world (the one in which a climate event occurs). Therefore, to

understand the connection between investment in climate preparedness and its impact on expected

returns, we built a model to factor in both effects.

The model we build is an intertemporal general equilibrium production-based asset pricing

model. The model extends Cochrane (1991) and Cochrane (1996) by allowing the firm to invest

in climate preparation. As in Cochrane (1996), we are able to show that the expected asset returns

are proportional to the betas of the returns on investments in physical capital and investments in

climate preparation. This result forms the basis for the model that we then apply to the data. To

get to the essence of the problem, we model investment decisions in a two-date model, denoted

date 0 and date 1. We assume that the economy is populated by a representative household and a

representative firm endowed with initial capital stock and the initial level of preparation/exposure

to climate risks. The level of preparation is captured by a score, which we call the E-score. In

our empirical analysis, we use the E-score provided by MSCI, the data provider, as an empirical

proxy for our theoretical E-score.3 The firm invests in preparation to protect against a possible

climate-change-induced event (CE) that can occur on the second date. If such an event occurs,

there is firm-level damage that decreases the firm’s profitability.4

On the next date, a CE occurs with probability p. We assume that this event is independent of

the stochastic process of profitability at date 1 and that the probability p is common knowledge.

Therefore, the firm is incentivized to invest in climate preparation because this results in less

3The MSCI ESG score is a measure of the likely impact that environmental factors have on the company and not a
measure of “greenness.” According to the MSCI ESG Ratings Methodology, the E pillar score is based on exposure
scores and management scores. The first measures the effect of the environment on the firm, while the second gauges
the level of preparation for environmental-related risks. Other ESG rating systems, however, measure greenness. This
explains why the MSCI E score has the lowest correlations with the E scores assigned by other ESG assessors (Berg,
Koelbel, and Rigobon, 2022). In particular, the correlation between the MSCI E score and other ESG E scores is below
0.37. In contrast, the correlation between the Moody and S&P E scores is 0.73.

4This assumption is consistent with empirical evidence. For example, Addoum, Ng, and Ortiz-Bobea (2023)
show that extreme temperatures affect corporate profitability in more than 40% of the US industries, and Pankratz,
Bauer, and Derwall (2023) show that increased exposure to extremely high temperatures reduces firms’ revenues and
operating income.
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exposure to downside risk. The representative household maximizes its expected utility over

consumption over two dates. The firm invests a fraction of capital to improve physical investment

and the rest to improve preparedness (the E-score). The firm maximizes the total equity and

dividend by taking the stochastic discount factor (SDF) from the household optimization as given.

We assume that the firm can reduce climate-related damage by investing in improving climate

preparedness. Furthermore, we require that spending on climate preparation reduces damage,

and the marginal effect of this investment is decreasing in its climate preparedness level. These

assumptions are consistent with Nordhaus (2007), Hong, Wang, and Yang (2023) and Golosov,

Hassler, Krusell, and Tsyvinski (2014).

We are able to get several results from the model. First, when the climate preparedness of a

firm is sufficiently low and the probability p is high, we get a corner solution characterized by a

positive investment in E and no physical investment. In this case, the expected return on aggregate

investment aligns with the return on E investment due to the significantly higher marginal benefits

associated with E investment compared to physical investment. Furthermore, the expected return

inversely correlates with the firm’s initial level of climate preparedness, given that the marginal

utility of E investment decreases as climate preparedness improves.

Second, conversely, when a firm’s climate preparedness is sufficiently high, there is a

second corner solution in which resources are allocated solely towards physical investment, as a

consequence of our assumption that the marginal utility of E investment decreases with increased

climate preparedness. Then, the expected return on aggregate investment corresponds to the return

on physical investment, which leads to a positive correlation between expected return and the

firm’s initial climate preparedness. Since we assume that the risk-averse representative household

has a logarithmic utility function, the optimal level of physical investment is unaffected by the

firm’s initial climate preparedness, which renders the marginal cost of investment constant with

respect to climate preparedness levels. However, the marginal benefits of physical investment are

positively correlated with readiness levels. Consequently, there is a direct and positive relationship

between initial climate preparation and expected returns.
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Third, when there is an interior solution in which the optimal levels of E and physical

investment are positive, we can numerically determine that there is a positive link between the

expected return on aggregate investment and the firm’s initial climate preparation. This positive

relationship is robust to changes in model parameters.5

The theoretical model developed in this paper suggests that a five-factor empirical asset pricing

model consisting of the market factor and the factors corresponding to the four drivers of asset

returns in our theoretical model, the E score, profitability, size, and investment, can be used to

price traded equity-based assets. This link between our model and pricing of the cross-section

follows from the reasoning highlighted in Cochrane (1991). Basically, investment returns and

asset returns can be related to the producer’s first-order conditions. Assume that the firm manager

has access to fully developed financial markets. In such a scenario, the manager can construct

a portfolio of assets that replicates the exact payoffs of the weighted average investment return

between physical investment and E investment across two states of the CE at date 1. If the cost

of acquiring this replicating portfolio exceeds one dollar, the manager should short the portfolio,

invest the proceeds to physical investment and E investment with amounts determined by first-

order conditions, and use the investment return to settle the mimicking portfolio, thereby securing

a guaranteed profit. In contrast, if the cost is less than one dollar, the opposite strategy would

apply. Firms will continually adjust their investment and production strategies until the returns of

the investments align with the returns from the replicating portfolio. In other words, firms eliminate

any arbitrage opportunities between asset returns and investment returns.

In a complete market, the investment return and the return of the replicating portfolio should

be equal ex post, across all possible states of nature. The theoretical model developed in this

paper suggests that the weighted average return between the physical investment and E investment

5The model of Pástor, Stambaugh, and Taylor (2022) has a different focus and motivation than our production-
based model and, therefore, comes to a different conclusion. In the former model, the utility function of investors
includes the firm’s E score, reflecting a taste for green investments. In equilibrium, investors are willing to accept low
expected returns from “green” stocks, since this is compensated by non-pecuniary benefits that accrue from high ESG
scores. To confirm this implication, one must use an E score that measures greenness, and not the MSCI E score, which
does not. Not surprisingly, using the latter, Pástor et al. (2022) failed to find support for their theoretical conclusion.
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depends on four firm’s characteristics, including the E score, profitability size, and investment.

These characteristics are hypothesized to be determinants of asset returns. Consequently, we

introduce a five-factor empirical asset pricing model, which includes four factors derived from

these firm characteristics, in addition to the market factor. It is important to note that our objective

is not to identify the best asset pricing model but rather to investigate the extent to which climate

preparedness contributes to pricing in the cross-section of assets. Accordingly, we have excluded

some common factors that are not suggested by our theoretical model, such as HML.6

We call our 5-factor model the CLP5 model. This model shows that high E factor stocks have

higher expected returns than low E factor stocks, which is consistent with the implications of our

theoretical model. To evaluate the effectiveness of the E factor in pricing the cross section, we

consider a variant that omits the E factor from the CLP5 model. In this way, we can determine

the contributing role of the E factor. Then we evaluate the empirical support for these two models

and find that the CLP5 model is better supported by the data. Furthermore, the CLP5 model shows

promise in pricing the cross section. Using 2,990 stocks as test assets, where each test asset has at

least 60 months of data, we find that the CLP5 model prices 2439 of those stocks at posterior odds

of at least 2:1, more than is priced by the model without the E factor. This outperformance persists

when we consider ETFs and anomalies as test assets.

Related Literature. This paper is a contribution to two strands of literature. The first strand is

climate finance. Giglio, Kelly, and Stroebel (2021) and Hong, Karolyi, and Scheinkman (2020)

review the literature on this rapidly growing field, summarizing theoretical and empirical contri-

butions. On the theory side, recent papers include, for example, Barro (2015), Van Binsbergen

and Koijen (2017), and Giglio et al. (2021), and on the empirical side, for example, Bolton and

Kacperczyk (2021), Hong, Li, and Xu (2019), Engle et al. (2020) and Alekseev, Giglio, Maingi,

Selgrad, and Stroebel (2021). These articles focus on the impact of climate change on asset prices

and returns in financial markets. Our paper, on the other hand, is a theoretical contribution that

6We use the MSCI E score as a proxy for the preparedness. The sample starts in November 2012 and ends in
December 2022. We construct the climate preparedness factor, the E factor, using the 3 by 2 sorting method in Fama
and French (1993).
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is based on incentives to invest in climate risk preparation/mitigation and the impact of such

investments on the expected return to equity.

The second strand of literature is production-based asset pricing. Balvers, Cosimano, and

McDonald (1990) show that there is a link between aggregate output growth and financial asset

returns and that output growth can therefore be used as an asset pricing factor, rather than

consumption growth. Subsequently, Cochrane (1991) and Cochrane (1996) developed theoretical

models with investment returns and output growth rates, as pricing factors, and provided empirical

evidence showing that investment-based CAPM outperformed traditional CAPM and CCAPM

models. Investment-based asset pricing models have also been used to link asset returns to business

cycles, for example, Cochrane et al. (2005), Balvers and Huang (2007), Boldrin, Christiano, and

Fisher (2001) and Croce (2014). Our article is inspired by Cochrane (1991) and Cochrane (1996)

that demonstrate that the return on investment is approximately proportional to the growth in the

investment/capital ratio. We extend these models to include a broader range of firm characteristics,

particularly focusing on a firm’s climate preparedness level. This extension aims to provide a

more nuanced understanding of how firm-specific factors influence asset pricing in the context of

evolving market dynamics and considerations of climate risks.

The remainder of the paper is organized as follows. In Section 2 we build an investment-based

asset pricing model that incorporates a random climate event (CE) and the firm’s level of climate

risk preparation. In Section 3 we provide evidence that the MSCI E score can be interpreted as a

measure of climate risk preparedness and construct the E factor from the data on these E scores.

In Section 5 we consider the cross-sectional pricing ability of the CLP5 factor model. Section 6

concludes the paper.
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2 Theoretical Model

We now present a two-date stochastic general equilibrium model in which the firm mitigates

exposure to climate change by spending proactively on climate preparation. In a production-based

asset model, asset returns are linked to marginal transformation rates obtained from the optimal

intertemporal investment decision. We measure this readiness generically in terms of what we call

the E score. The firm invests in this preparation because of a possible climate event (CE) on the

second date that causes damage that is inversely related to the level of preparation. Therefore, the

firm is incentivized to spend on climate preparedness because this results in lower risk exposure to

such an event.

2.1 Production

Consider a two-date model populated by a representative household and a representative firm in the

economy. We label the two dates as date 0 and date 1. The firm produces on both dates and starts

with an initial productive asset (K0), profitability (Π), and an E-score (e0). On date 0, the operating

cash flow of the firm, labeled Y0, is calculated by multiplying its profitability (Π) by its initial asset

(K0). At date 1, operating cash flow, indicated by Y1, is subject to a CE shock, which hits the

economy with a known probability of p. We suppose that the CE shock is the only uncertainty in

the economy. The scalar s describes the CE status on date 1. If a CE shock hits the economy, then

s = sT ; if the economy is not hit by a CE shock, then s = sF . When s = sT , a portion κ(e1,s) of

operational cash flow Y1 is destroyed, where

κ(e1,s) =


1− e−e1 s = sT

1 s = sF

(1)

and e1 represents the date-1 E-score. The damage function κ(e1,s) captures two features: the

boundary (1 − e−e1 ∈ (0,1] if s = ST ) and concavity. Due to concavity, there are diminishing
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returns to climate preparation as e1 increases. We provide empirical evidence in support of this

assumption in the A.

Given the initial e0, we suppose that the E-scores evolve as

e1 = e0 + f (E0) (2)

where E0 denotes the investment in climate risk preparation. We assume that ∂ f
∂E0

≥ 0 and e0 ≥ 0.

Any nonnegative E0 guarantees that e1 is positive. Consequently, as defined by Eq. (1), 0 ≤

κ(e1,sT )< 1. Note that investing in climate preparation does not directly enhance the firm’s stock

of capital, but it reduces vulnerability to the effects of a CE shock. The date-1 operating cash flow

is given by Y1 = (1−κ(e1,s))ΠK1.

2.2 Assets and asset prices

Definition 1: An asset is a contingent claim that pays one unit of the consumption good (the

numeraire) in the state of the world s. The price of this asset at date 0 in state s is q0(s).

These prices serve as a basis for deriving the stochastic discount factor (SDF). Specifically, the

SDF can be expressed as the ratio of the price of an Arrow-Debreu asset in a given state to the price

of the same asset in a reference or numéraire state. The firm generates Π0K1(1−κ(e1,s)) units of

consumption. The output price is q0(s)Π0K1(1−κ(e1,s)) in state s. The firm takes the price q0(s)

as given when choosing the investments and the dividend distributed to the household.

We assume that the representative firm is entirely owned by the representative household, which

acts as the sole producer and consumer within this model. The firm produces a single commodity

that can be consumed by the representative household or invested. The representative household

seeks to optimize a two-date, time-additive utility function. This utility function captures the

household’s preferences over consumption across two dates, reflecting the trade-offs the household
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makes between immediate consumption, future consumption, and investment decisions.

U = u(C0)+β [pu(C1(sT ))+(1− p)u(C1(sF))] (3)

where β denotes the subjective discount factor of the representative household, and C0 and C1

are consumption in dates 0 and 1, respectively. The first-order condition for consumption can be

written as

u′(C0) = β [pu′(C1(sT ))+(1− p)u′(C1(sF))] (4)

The stochastic discount factor (SDF), before the realization of the CE shock, takes the form m(s)≡
βu′(C1(s))

u′(C0)
. Therefore, in equilibrium, asset prices must satisfy the pricing conditions

q0(sT ) = pβ
u′(C1(sT ))

u′(C0)
= pm(sT ) and q0(sF) = (1− p)β

u′(C1(sF))

u′(C0)
= (1− p)m(sF) (5)

2.3 The firm’s optimization problem

First-order conditions. The firm at date 0 chooses physical investment I0 and E investment E0

to maximize its date-0 expected cum dividend, given initial capital stock K0 and initial E-score, e0

and contingent claim prices q0(s)

max
I0,E0

[
ΠK0 −G0 −

a
2

(
I0

K0

)2

K0

]
+[q0(sT )Π0K1 +q0(sF)(1−κ(e1,sT ))ΠK1] (6)

subject to

Resources: Y0 =C0 +G0 −
a
2

(
I0

K0

)2

K0 (7)

E-score accumulation: e1 = e0 + f (E0) (8)

Capital accumulation: K1 = I0 +(1−δ )K0 (9)

Total investment: G0 = I0 +E0 (10)
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where K1 represents date-1 capital. Capital can be expressed as the sum of initial capital adjusted

for deprecation at a rate δ , denoted as (1− δ )K0, and physical investment I0, that is, K1 = I0 +

(1− δ )K0. The quadratic term represents a convex adjustment cost. The first-order optimality

conditions for E investment E0 and physical investment I0 are, respectively,

1 = q0(sT ) f ′(E0)e−e1ΠK1 (11)

1+a
I0

K0
= q0(sF)Π+q0(sT )(1− e−e1)Π (12)

where f ′(E0) =
∂ f (E0)

∂E0
. Or, equivalently, we can write

1 = ∑
s

q0(s)RE(s) and 1 = ∑
s

q0(s)RI(s) (13)

where RE(s) and RI(s) represent the investment return on E0 and I0 at state s, respectively.

Consequently, we can express the expected returns on investments as follows

E[RE ] = p f ′(E0)e−e1ΠK1 and E[RI] =
(1− p)Π+ p(1− e−e1)Π

1+a I0
K0

(14)

where E[RE ] and E[RI] denote the date-0 expected return on E0 and I0, respectively.

2.4 Expected return on investment

We now turn to our central questions: the impact on the expected return of physical investments,

which encompass traditional capital expenditures, and E investments, which are directed towards

enhancing the firm’s resilience to climate change. We analyze the different expected returns for

these investments, highlighting their varying risk and return profiles.

We also consider the expected return to aggregate investment, represented as G0 = I0 +E0.

Understanding the dynamics of aggregate investment is important, as it reflects the returns to

traditional growth objectives with the imperative of climate adaptation. We define the expected

10



rate of return on aggregate investment as

E[R] =
I0

G0
E[RI]+

E0

G0
E[RE ]. (15)

In other words, E[R] is the weighted average of the expected returns of the components. Of

particular interest is the characterization of these expected returns under equilibrium conditions.

Definition 2: An equilibrium is an allocation {E0, I0} and a price system {q0(sT ),q0(sF)} that

satisfy the following conditions: (1) Each component of the price system and the allocation is

non-negative; (2) C0 = ΠK0 − I0 −E0 is non-negative; (3) Given the price system and given the

initial E-score e0 and capital K0, I0 and E0 solve the optimization problem of the representative

firm; (4) Given the choice of E0 and I0, the optimization problem of the representative household

determines q0(sT ) and q0(sF).

In our analysis, equilibrium allocations are derived by resolving the optimization problems

encountered by the household and the firm. For simplicity, we assume a logarithmic utility

function U(C) = lnC which is commonly used and is rather standard in the literature, and a linear

climate preparedness increment f (E0) = E0. As outlined in Section 2.2 and 2.3, determining the

equilibrium values for E0, I0, q0(sF) and q0(sT ) requires the solution of the equations in (11), (12)

and (5). We substitute the price functions specified in (5) into the first-order conditions delineated

in (11) and (12). After this substitution, we are left with a simplified system of equations given by

1 = pβ

(
ΠK0 − I0 −E0

(1− e−e1)ΠK1

)
e−e1ΠK1 (16)

1+a
I0

K0
= (1− p)β

(
ΠK0 − I0 −E0

ΠK1

)
Π+ pβ

(
ΠK0 − I0 −E0

(1− e−e1)ΠK1

)
(1− e−e1)Π (17)

After further algebra, these equations can be expressed as a single equation that depends only on

I0.
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Figure 1 Investments in equilibrium. This figure shows equilibrium values of E0 (the red dashed
line) and I0 (the blue solid line), denoted as E∗

0 and I∗0 , respectively. Results are plotted against
e0 ∈ [0,2], the initial climate preparedness level. The parameters are set as follows: K0 = 2,
Π = 1.05, a = 0.1, β = 0.98, δ = 0.1, and p = 0.2. The figure shows that over the range of e0
values where both I∗0 ≥ 0 and E∗

0 ≥ 0 are satisfied, physical investment increases with the initial e0,
while E investment decreases with the initial e0.

Equilibrium Characterization. Let E∗
0 and I∗0 represent the equilibrium values of I0 and E0,

respectively, as defined in Definition 1. Figure 1 plots the equilibrium value of I0 and E0 as a

function of e0. We set the benchmark parameters as follows: K0 = 2, Π = 1.05, a = 0.1, β = 0.98,

δ = 0.1, and p = 0.2. We observe that when e0 is sufficiently low, it is optimal to choose a zero I0

and a positive E0. This corner solution arises because the marginal benefits of E0 are substantially

higher than those of an investment in I0. On the contrary, a corner solution {I∗0 > 0,E∗
0 = 0} can

also occur if e0 is sufficiently high. Then, in equilibrium, the firm will opt exclusively for positive

physical investments. At an interior equilibrium, both Eqs. (16) and (17) hold.

The expected returns on investments can be determined with E∗
0 and I∗0 . Figure 2 plots the

expected returns for three types of investment: E investment (red dot-dashed line), physical

12



Figure 2 Expected returns on investments. The solid blue line represents the expected return
on physical investment I0. The red dot-dashed line plots the expected return on E investment E0.
The green dotted line plots the weighted average expected return. The results are plotted against
e0 ∈ [0,2], the initial level of climate preparedness. The parameters are set as follows: K0 = 2,
Π = 1.05, a = 0.1, β = 0.98, δ = 0.1, and p = 0.2. The figure shows that over the range of e0
values where I∗0 ≥ 0 and E∗

0 ≥ 0, E[R] calculated as the weighted average of E[RE ] and E[RI],
increases with e0.

investment (blue solid line), and the weighted average investment (green dotted line), under the

benchmark calibration. We observe that when e0 is sufficiently low, the green dotted line overlaps

with the red dotted line, indicating E[R] = E[RE ]. In this scenario, the expected returns on

investment in E and the weighted average investment exhibit a decreasing trend with e0. In contrast,

when e0 is sufficiently high, the green dotted line overlaps with the blue solid line, indicating

E[R] = E[RI]. The expected returns on physical investment and weighted average investment

increase in e0. For intermediate e0, where interior solutions emerge, E[R] is the weighted average

of E[RE ] and E[RI], and shows an upward trend with e0.

We now provide a detailed discussion of the solutions and associated expected returns, starting

with the corner solution {E∗
0 = 0, I∗0 > 0}, for which analytical expressions are available. This
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particular solution emerges when the marginal benefits associated with I0 are substantially higher

than any positive investment in E0. Under such circumstances, the optimal value of I∗0 can

be determined by inserting E∗
0 = 0 into Eq.(12). This allows I∗0 to be analytically determined

independently of e0. Moreover, e1 = e0 given that E∗
0 = 0. Consequently, the expected return on

physical investment in (14) shows an increasing trend with e0. The idea behind this increasing

trend is straightforward. for any sufficiently high level of e0, the marginal benefits associated

with E0 are less than those of I0, due to the concavity of the function 1− e−e1 . As e0 increases,

the incremental benefits of investing in E0 decrease. In equilibrium, where E∗
0 = 0, the optimal I∗

remains unaffected by E0, making the marginal costs independent of e0, while the marginal benefits

increase with e0. As a consequence, the expected return on the weighted average investment E[R],

is equal to E[RI], demonstrating a positive correlation with e0.

We then discuss the other corner solution, {E∗
0 > 0, I∗0 = 0}. The solution arises when the

marginal benefits of E0 are substantially greater than any positive investment in I0. Similarly to the

previous corner solution, we solve E∗
0 from (11) by setting I∗0 = 0, revealing that E∗

0 is a function of

e0. To examine how E[RE ], which is calculated as pe−e1Π(1− δ )K0, is affected by e0, it suffices

to explore the relationship between e1 and e0, since E[RE ] is strictly over e1. When e0 > e′0, we

have e1 > e′1 (see Figure B.1). Therefore, E[R], which is equal to E[RE ], decreases in e0.

Finally, we turn to the interior solution, where {E∗
0 > 0, I∗0 > 0}. At an interior equilibrium,

it must be that both Eqs. (16) and (17) hold. The expected return on physical investment E[RI]

shows a decreasing trend with respect to e0. In contrast, the expected return on investment in E

E[RE ] shows an increasing trend as e0 increases. The aggregate investment return, E[R], which

is the weighted average of E[RE ] and E[RI] reflects the combined effects of these dynamics. As

demonstrated in Figure 2, E[R] increases in e0, indicating that if the gains of the investment in E

outweigh the diminishing returns from physical investment.
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2.5 Comparative statics

A change in any parameter might affect the equilibrium values and expected returns. In this section,

we consider the comparative statics of our model to examine how variations in specific parameters

influence the equilibrium outcomes and expected returns. We begin this exploration by analyzing

the possibility of CE in the parameter p, detailed in Section 2.5.1. Subsequently, we examine the

implications of different initial capital levels, denoted K0, presented in Section 2.5.2. Furthermore,

the effects of changes in the profitability parameter, Π, are elucidated in Section 2.5.3. Lastly,

we address the impacts resulting from adjustment costs, with an in-depth discussion provided in

Section 2.5.4.

2.5.1 Changes in p

The CE shock hits the economy at date 1 with a known probability of p. This probability dif-

ferentially influences the expected marginal benefits of E investments versus physical investments.

Specifically, the expected marginal benefits of E investments are positively correlated with p, since

such investments primarily aim to mitigate the impacts of CE shocks, thus increasing in value as

the probability of the shock intensifies. In contrast, the expected marginal benefits of physical

investments are susceptible to reduction upon the occurrence of the CE shock, and a fraction of

these benefits potentially being negated due to the adverse effects of the shock on physical assets

or operating cash flows.

Figure 3 illustrates the features of the comparative statics of p. In the figure, the parameters

K0, Π, a, β , and δ are constant throughout, taking the value of 2, 1.05, 0.1, 0.98, and 0.1 as a

reference, while the probability p increases from left to right and from the top row to the bottom

row. Specifically, in the upper row from left to right, p takes the values 0.05, 0.1, and 0.3. In

the bottom row, the progression continues with p taking the values 0.5, 0.7, and 1, also from left

to right. The higher p, the higher is the incentive to invest in climate preparation, all else equal.

So, when we move from left to right and from the top row to the bottom row, we see that the
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equilibrium starts with interior solutions when p is sufficiently low. This indicates that when p

and e0 are sufficiently low, it is optimal to invest positively in both the E investment and physical

investment. When p is sufficiently high and e is sufficiently low, the marginal benefits of the

investment in E are significantly higher than the benefits associated with physical investment. It is

optimal for the firm to invest exclusively in E. The range of such corner solutions with respect to

e0 is increasing in p. Next, we discuss two extreme cases: p = 0 and p = 1, which are stated in the

following two propositions.

Figure 3 The value of p increases from left to right and from the top row to the bottom row.
Specifically, in the top row from left to right, p takes the values 0.05, 0.1, and 0.3. In the bottom
row, the progression continues with p taking the values 0.5, 0.7, and 1, also from left to right. The
red dot-dashed line represents the expected return on physical investment I0. The solid green line
plots the expected return on E investment E0. The black dotted line plots the weighted average
expected return. The parameters are set as follows: K0 = 2, Π = 1.05, a = 0.1, β = 0.98, and
δ = 0.1. This comparison shows that the incentive to invest in climate preparation increases with
p, all else equal.

Proposition 1: If a CE has p = 0 probability of occurring on date 1, the firm will not invest in

improving the E-score, that is, E0 = 0. The expected return E[R] is uncorrelated with e0.

Proposition 1 shows that when climate risk is absent, our model reduces to an ordinary
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production-based asset pricing model and the marginal product of the E investment is 0. In other

words, when p = 0 we have a corner solution with E∗
0 = 0.

Proposition 2: If a CE has p = 1 probability of occurring on date 1, then E[R] = E[RE ] when

I∗0 = 0. Similarly, E[R] = E[RI] when E∗
0 = 0. At interior solutions where both I∗0 and E∗

0 are

positive, E[R] = E[RE ] = E[RI].

When p = 1, uncertainty about climate change vanishes, and the expected returns on E

investment and physical investment are identical where there are interior solutions.

2.5.2 Changes in K0

The initial capital, K0, has different impacts on the expected returns on E investments and physical

investments. Specifically, the expected marginal benefits of E investments are positively correlated

with K0, thereby increasing in value as K0 increases. In contrast, K0 affects the marginal costs

of physical investments through two distinct channels: (1) increase costs by raising physical

investment, I0 and (2) decrease costs by appearing directly in convex adjustment costs.

Figure 4 illustrates the characteristics of the comparative statics of K0. In the figure, the

parameters K0, Π, a, β , and δ are constant throughout, while the probability p increases from

left to right and from the top row to the bottom row. Specifically, in the upper row from left to

right, K0 takes the values 0.5, 1, and 3. In the bottom row, the progression continues with p taking

the values 5, 7, and 10, also from left to right. The figure shows that the range of e0 values leading

to positive E investments widens with an increase in K0, reflecting a positive correlation between

the marginal returns of E investments and K0.
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Figure 4 The value of K0 increases from left to right and from the top row to the bottom row.
Specifically, in the top row from left to right, K0 takes the values 0.5, 1, and 3. In the bottom row,
the progression continues with p taking the values 5, 7, and 10, also from left to right. The red
dot-dashed line represents the expected return on physical investment I0. The green solid line plots
the expected return on E investment E0. The black dotted line plots the weighted average expected
return. The parameters are set as follows: Π = 1.05, a = 0.1, β = 0.98, δ = 0.1 and p = 0.2. The
figure shows that the range of e0 values leading to positive E investments widens with an increase
in K0, reflecting a positive correlation between the marginal returns of E investments and K0.
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2.5.3 Changes in Π

The profitability is positively link to both the marginal benefits of E investments and physical

investments. Figure 5 illustrates features of the comparative statics of Π. Parameters p, Π, a, β ,

and δ are constant as the benchmark throughout, whereas the probability Π increases from left to

right and from the top row to the bottom row. Specifically, in the top row from left to right, Π takes

the values 0.9, 0.95, and 1. In the bottom row, the progression continues with Π taking the values

1.05, 1.1, and 1.2, also from left to right.

The figure demonstrates that when Π is sufficiently low, the firm will only spend on E

investment when e0 is low. The firm will not invest in either E investment or physical investment

when e0 is above a threshold (the most left subfigure in the top row in Figure 5 when Π = 0.9).

However, when Π is not remarkably low, the firm will exclusively spend on E investment when

e0 is low, and exclusively spend on physical investment when e0 is sufficiently high. The idea

behind this is easy to understand. When e0 and Π are sufficiently low, the marginal benefits of

E investments are significantly higher than those of physical investments, so it is optimal for the

firm to choose exclusively positive E investments. When the Π is sufficiently high, we see that the

positive correlation between e0 and the weighted average investment return E[R] holds for various

Π.
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Figure 5 The value of Π increases from left to right and from the top row to the bottom row.
Specifically, in the top row from left to right, Π takes the values 0.9, 0.95, and 1. In the bottom
row, the progression continues with Π taking the values 1.05, 1.1, and 1.2, also from left to right.
The red dot-dashed line plots the expected return on E investment E0. The green dotted line plots
the weighted average expected return. The parameters are set as follows: K0 = 2, a= 0.1, β = 0.98,
δ = 0.1 and p = 0.2. The figure shows that when e0 and Π are sufficiently low, it is optimal for the
firm to choose exclusively positive E investments. When the Π is sufficiently high, we see that the
positive correlation between e0 and the weighted average investment return holds for various Π.
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2.5.4 Changes in a

The parameter a is the coefficient of adjustment cost of physical investment. Any positive a

suggests a convex adjustment cost that involves physical investment. When a = 0, the marginal

costs of the physical investment and E investment are equal. The higher is a the higher is the

marginal cost of physical investment, all else equal.

Figure 6 illustrates the features of the comparative statics of a. Parameters K0, Π, p, β , and

δ are constant as the benchmark, whereas the adjustment cost coefficient a increases from left to

right and from the top row to the bottom row. Specifically, in the top row from left to right, a takes

the values 0, 0.05, and 0.1. In the bottom row, the progression continues with a taking the values

0.5, 1, and 5, also from left to right.

The figure shows that the slope of the relationship between E[RE ] and e0 becomes steeper,

indicating an intensifying negative correlation. The idea behind this is easy to understand. When a

is high, the marginal cost of physical investment is high, the firm spends more on E investment as

the increase of a when e0 is sufficiently low. Given that the marginal benefits of the E investment

decrease in e0, we observe an intensifying decrease in the return of the E investment E[RE ] as a

increases. Note that when a is unreasonable high, E[RE ] also decreases with e0. Although the

average impact can be mixed depending on adjustment cost parameter a, our comparative statics

exhibit a positive correlation between e0 and weighted average return E[R].
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Figure 6 The value of a increases from left to right and from the top row to the bottom row.
Specifically, in the top row from left to right, a takes the values 0, 0.05, and 0.1. In the bottom
row, the progression continues with a taking the values 0.5, 1, and 5, also from left to right. The
red dot-dashed line plots the expected return on E investment E0. The green dotted line plots the
weighted average expected return. The parameters are set as follows: K0 = 2, Π = 1.05, β = 0.98,
δ = 0.1 and p = 0.2. The figure shows that the slope of the relationship between E[RE ] and e0
becomes steeper, indicating an intensifying negative correlation.
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3 Data

3.1 MSCI E-score as a proxy of climate preparedness

We use the MSCI E-score as a proxy for climate preparedness. Although this score has been

used to measure “greenness” in the literature (see, for example, Pástor et al. (2022)), it is more

associated with firms’ exposure to climate change and preparedness to manage those risks than

“greenness”. As Simpson, Rathi and Kishan wrote in the Bloomberg article- The ESG mirage,

“There is virtually no connection between MSCI’s ‘better world’ marketing and its methodology.

That is because ratings do not measure a company’s impact on the Earth and society. In fact,

they gauge the opposite: the potential impact of the world on the company and its shareholders.

MSCI does not dispute this characterization”.7 Furthermore, according to the MSCI ESG Ratings

Methodology, the E pillar score is based on exposure scores and management scores. The first

measures the effect of the environment on the firm, while the second gauges the level of preparation

for environmental-related risks. The MSCI E-score measures a firm’s readiness to handle climate

risks and exposure. It assesses firm-level vulnerability to climate effects and the preparedness of

management to deal with these exposures.

Furthermore, according to Berg et al. (2022), the MSCI ESG rating exhibits a greater

divergence from other prominent ESG rating agencies due to heterogeneity in scope, measurement

and weighting. Other ESG rating systems, however, focus on measuring greenness. This explains

why the MSCI E score has the lowest correlation with the E scores assigned by other ESG

assessors. In particular, Berg et al. (2022) report that the correlation between the MSCI E score

and other ESG E scores is below 0.37. In contrast, the correlation between the Moody and S&P E

scores is 0.7. As an illustration of how different ESG ratings prioritize different aspects within the

same category, Table III of Berg et al. (2022) offers a comparison of indicators that rating agencies

assign to the water category. Refinitiv’s water category assigns indicators including Emission

7https://www.bloomberg.com/graphics/2021-what-is-esg-investing-msci-ratings-focus-on-corporate-bottom-line/
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Reduction/Discharge into the Water System, Resource Reduction/Water Recycling, and Resource

Reduction/Water Use. In contrast, the MSCI water category score is related to the firm’s water

stress management capacity.

3.2 MSCI E and corporate climate risk exposure

To further establish the fact that the MSCI E score is more about climate preparation and less

about exposure to climate risk, we source data on exposure to climate risk from Sautner, Van Lent,

Vilkov, and Zhang (2023). We estimate fixed-effect panel regression with MSCI E as the dependent

variable and exposure to physical shocks, denoted by ph expo ew, as the predictor. The results of

the panel regressions of individual stock MSCI E scores by quarters on ph expo ew are given in

Table 1.

Although there is a statistically significant relationship between exposure to climate risk,

measured by ph expo ew, and the MSCI E score, the extremely low values of R2 and negative

adjusted R2 indicate that this relationship accounts for virtually none of the variation in the MSCI

E score. This suggests that the MSCI E score may primarily reflect climate risk preparation or

other factors, rather than direct exposure to climate risk.

Table 1 MSCI E and climate risk exposure. We estimate quarterly panel regressions using data
from Q4 2012 through Q4 2022. The dependent variable is MSCI E, and the independent variable
is ph expo ew in Sautner et al. (2023).

Dependent variable:

E

ph expo ew −228.401∗∗∗

(24.002)

Observations 62,355
R2 0.002
Adjusted R2 −0.045
F Statistic 90.551∗∗∗ (df = 1; 59599)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.3 Summary statistics of factors

We collect monthly stock returns from the CRSP. Our sample data start in November 2012 and

end in December 2022. In line with Pástor et al. (2022), we start from November 2012 because

that is the month that the MSCI coverage of firms became more comprehensive. We merge MSCI

E-score data with CRSP return data that have share codes 10 or 11, which typically represent

common stocks. We also excluded financial firms, identified by SIC codes ranging from 6000

to 6999. To estimate the effect of climate preparedness on the pricing of the cross sections, we

construct the climate preparedness factor, the E factor, using the 3 by 2 sorting method in Fama

and French (1993). The other four factors, the market factor Mkt, firm size SMB, profitability

RMW and investment CMA, come from Kenneth R. French - Data Library.8

Panel (A) in Table 2 reports the mean, standard deviation, t statistic, and Sharpe ratio of the

constructed slope factors from November 2012 to November 2022. As expected, the market factor

exhibits the highest Sharpe ratio. In addition, the risk premium of the market factor is the highest.

The E factor also has a positive risk premium during the sample period. This observation is

consistent with the findings suggested by our theory. In particular, the risk premium is high, second

only to the market factor when we exclude the effect of the pandemic, as shown in Panel (B).

According to Tollefson (2021), carbon dioxide emissions decreased by 6.4% in 2020 compared

to 2019, as the COVID-19 pandemic slowed economic and social activities around the world.

During the pandemic, companies were less likely to focus on climate preparation as they struggled

with unexpected disruptions to demand and supply chains. Furthermore, the worldwide decline in

carbon emissions reduced the probability of climate-related events. As a result, the risk premium

for the E factor can be seen to increase markedly when years of the pandemic are excluded.

In terms of correlations, as shown in Table 3 Panel (A), the E factor is most correlated with

CMA and least correlated with Mkt. The latter is also true when the years of the pandemic are

excluded.

8Download from https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 2 Factor premiums: mean, standard deviation, t-statistic, and Sharpe Ratio. Panel (A)
shows that E factor has a positive risk premium. The risk premium is high, second only to the
market factor when we exclude the effect of the pandemic, as shown in Panel (B).

Mean SD t-statistic SR

Panel (A): November 2012 - December 2022

E 0.09 3.26 0.32 0.01
Mkt 1.01 4.40 2.53 0.22
SMB -0.04 2.66 -0.15 -0.03
RMW 0.28 2.03 1.53 0.11
CMA 0.13 2.18 0.65 0.03

Panel (B): November 2012 - December 2019

E 0.50 2.74 1.70 0.16
Mkt 1.13 3.31 3.18 0.33
SMB -0.10 2.39 -0.39 -0.07
RMW 0.07 1.45 0.43 0.01
CMA -0.14 1.47 -0.90 -0.14

Table 3 Correlation matrix of a slope factor set. The E factor is most correlated with CMA and
least correlated with Mkt. The latter is also true when the years of the pandemic are excluded.

E Mkt SMB RMW CMA

Panel (A): November 2012 - December 2022

E 1
Mkt -0.162 1
SMB -0.209 0.308 1
RMW -0.323 0.083 -0.383 1
CMA -0.519 -0.197 -0.004 0.173 1

Panel (B): November 2012 - December 2019

E 1
Mkt -0.109 1
SMB -0.125 0.314 1
RMW -0.232 -0.13 -0.478 1
CMA -0.491 -0.197 0.022 0.161 1
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4 Factor risk premia

In this section, we estimate the factor risk premia based on the Bayesian method developed by

Chib and Zeng (2020). Specifically, let CLP5 factors be potential risk factors in the SDF. Suppose

the SDF consists of the risk factors x j,t : kx, j ×1, and a complementary set of factors (the non-risk

factors) ft\x j,t =w j,t : kw, j ×1. Let the SDF be

M j,t = 1−λ′
x, jΩ

−1
x, j

(
x j,t −E[x j,t ]

)
, (18)

where bx, j ≜ Ω
−1
x, jλx, j : kx, j × 1 are the unknown risk factor loadings, and Ωx, j : kx, j × kx, j is the

covariance matrix of x j. Enforcing the pricing restrictions implied by the no-arbitrage condition

E[M j,tx
′
j,t ] = 0 and E[M j,tw

′
j,t ] = 0

for all t, we get that

E[x j,t ] = λx, j and E[w j,t ] = Γ jλx, j,

for some matrix Γ j : kw, j × kx, j.

If we assume that the joint distribution of (x j,w j) is Gaussian, then the latter pricing

restrictions imply that under a marginal-conditional decomposition of the factors, M j has the

restricted reduced form given by

x j = λx, j +εx, j, (19)

w j = Γ jx j +εw·x, j, (20)

where the errors are block independent Gaussian

 εx, j

εw·x, j

∼ NK

0,

Ωx, j 0

0 Ωw·x, j


 , (21)
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and Ωw·x, j : kw, j × kw, j is the covariance matrix of the conditional residuals εw·x, j.

We estimate the parameters in Eq. (19) - (21) with the data of the 5 factors as risk factors from

November 2012 to December 2019, excluding the impacts of the Pandemic. The posterior means,

standard deviations, and quantiles, given in Table 4. Both Mkt and E factors have significant factor

risk premia, with both positive 5% quantile and 95% quantile. The marginal distributions of the 5

risk premia parameters are shown in Figure 7.

Table 4 Posterior Statistics of the Risk Premia Parameters in the CLP5 model. The sample
ranges from November 2012 to December 2019, excluding the impacts of the Pandemic. These
are based on 10,000 MCMC draws, with a burn-in of 1000 draws. This table reports posterior
statistics, including posterior mean, posterior standard deviation, posterior median, 5% quantile,
and 95% quantile in percentage for the risk premia in λx in the CLP5 model with Mkt, E, SMB,
CMA and RMW as risk factors. Both Mkt and E factors have significant factor risk premia, with
both positive 5% quantile and 95% quantile.

Posterior mean Standard deviation Posterior median 5% quantile 95% quantile
Mkt 0.12 0.04 0.12 0.05 0.20

E 0.10 0.06 0.10 0.01 0.20
SMB -0.04 0.06 -0.04 -0.15 0.07
CMA 0.03 0.11 0.03 -0.14 0.20
RMW 0.12 0.11 0.12 -0.06 0.29
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Figure 7 Posterior distribution of the risk premia parameters of the CLP5 model. The sample
ranges from November 2012 to December 2019, excluding the impacts of the Pandemic. These are
based on 10,000 MCMC draws, with a burn-in of 1000 draws. The error is a multivariate Gaussian
distribution. The posterior 0.025 and 0.975 quantities are marked by blue crosses. The posterior
means are marked by red triangles.

5 Pricing of the cross-section

Our theoretical model posits that the expected return is influenced by several characteristics of the

firm, including the size of the firm, investment, profitability, and readiness for the climate. In terms

of factors, the empirical model for pricing assets takes the form

Rei,t = βi,MktMktt +βi,eet +βi,SMBSMBt +βi,RMW RMWt +βi,CMACMAt + εi,t (22)

where Rei,t is the excess return on equity of asset i. Mkt denotes the market factor, SMB is the

size factor, CMA is the investment factor, RMW is the profitability factor, and e is the climate

preparation factor.
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5.1 Pricing stocks

In the Bayesian pricing test, every test asset is examined individually by the factor model. Let the

excess return of a test asset be re. The asset is priced by the factor model x∗ if

re = β′
0x

∗+ ε0, (23)

and mispriced if

re = α +β′
1x

∗+ ε1. (24)

In the frequentist pricing test, one estimates the latter model and tests the null hypothesis of no

mispricing, i.e. α = 0. If the estimate of α differs significantly from zero, the null is rejected, and

the asset is not-priced. In the Bayesian approach, both models are estimated, and the respective

log-marginal likelihoods are compared. From this approach, we can obtain evidence in favor of

pricing at different levels of posterior confidence. Let m0 denote the log-marginal likelihood of the

regression model that assumes that the asset is priced, and let m1 denote the log-marginal likelihood

of the regression model that assumes that the asset is not priced. Then, the probability that the risk

factors price the asset given the data is

Pr(re is priced by x∗|Data) =
1

1+ e−d (25)

where d = m0 −m1 is the difference in log-marginal likelihoods. An asset is priced at posterior

odds of 2:1 (priced:mispriced) if the probability in Equation (25) is at least 0.667 (d ≥ 0.693). It is

priced at posterior odds of 3:1 if the probability is at least 0.75 (d ≥ 1.09) and priced at posterior

odds of 4:1 if the probability is at least 0.8 (d ≥ 1.38).

We considered a sample of 2990 stocks (CRSP share codes 10 and 11) with at least 60 months

of data from November 2012 to December 2022. Stocks of financial firms (SIC codes 6000-6999),

negative book equity, and price per share below $5 per share are excluded. Given their higher
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volatility, stocks present a greater challenge for pricing models compared to portfolios. In Table 5

we compare the pricing performance of models with and without the E factor. As can be seen in

the table, under the 2:1 criteria, 2439 of 2990 stocks are priced by the model with the E factor, as

opposed to 2398 of 2990 stocks without the E factor. The model with the E factor also outperforms

other benchmark models.

We apply the same testing approach to a sample of 948 ETFs from November 2012 to

December 2022. ETFs are diversified portfolios that are liquid, transparent, and inexpensive to

trade. As a result, the premium of these assets is likely to be determined by exposure to the

common non-diversifiable sources of risk manifested in the risk factors. We obtain data on all

exchange-traded funds from the CRSP stock database identified by their share code 73. As ETFs

are securities according to the CRSP stock database and funds according to the CRSP Survivor-

Bias-Free Mutual Fund database, we can obtain both the fund’s price and holding information,

which we match by Cusip. We confirm that the funds are ETFs by retaining only funds with the

“F” ETF flag in the CRSP mutual fund database. We retain only equity ETFs, with Lipper asset

code EQ in the CRSP mutual fund database. Additionally, we exclude foreign and global ETFs

that have a Lipper Class Name containing a country or global region name or the words “global”

or “international”. Finally, we read through each ETF name and remove any levered ETFs. The

levered ETFs are usually very small compared to their unlevered counterparts. As we see in Table

5, under the 2:1 criteria, the model with the E factor prices 701 of 948 ETFs, compared to 598 of

948 ETFs without the E factor.

Finally, we use two sources of anomalies as test assets. The first set of anomalies comes

from Hou, Xue, and Zhang (2020) (HXZ anomalies) covering the period from November 2012

to December 2021. The second set of anomalies comes from decile portfolios in Chen and

Zimmermann (2021) (CZ anomalies) covering the period from November 2012 to December 2022.

In particular, for anomalies in this source without missing data, we construct long-short portfolios

using the top minus the bottom deciles. The comparison results, presented in Table 5, indicate

that, while the models with and without the E factor demonstrate similar effectiveness in pricing
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the CZ anomalies, the model with the E factor outperforms the model without in pricing the HXZ

anomalies, at all odds.

Table 5 Bayesian pricing results on a large collection of test assets: # of assets being priced.
This table reports the number of priced stocks, ETFs and anomalies for the CLP5 and the CLP4
model. 2990 stocks are obtained from CRSP (with share codes 10 and 11) that have at least 60
months of data from November 2012 to December 2022. Stocks of financial firms (SIC codes
6000-6999), negative book equity, and price per share below $5 per share are excluded. Our 948
ETFs are from the CRSP (share code 73) from November 2012 to December 2022. We confirm
that the funds are ETFs by retaining only funds with the “F” ETF flag in the CRSP mutual fund
database. We retain only equity ETFs, with Lipper asset code EQ in the CRSP mutual fund
database. Additionally, we exclude foreign and global ETFs that have a Lipper Class Name
containing a country or global region name or the words “global” or “international”. HXZ
anomalies come from Hou et al. (2020) (HXZ anomalies) from November 2012 to December
2021 and CZ anomalies are from Chen and Zimmermann (2021) (CZ anomalies), constructed by
balanced long-short portfolios using the top minus the bottom deciles from November 2012 to
December 2022. The number of priced assets is reported for posterior odds of priced vs not priced
of 2:1 and 3:1.

Risk factors set # priced at 2:1 # priced at 3:1 # priced at 4:1
2990 Stocks

CLP5 2439 1996 1488
CLP4 2398 1936 1355

948 ETFs
CLP5 701 541 366
CLP4 598 440 283

188 HXZ anomalies
CLP5 113 81 50
CLP4 83 56 27

185 CZ anomalies
CLP5 108 67 37
CLP4 101 71 40

6 Conclusion

In this paper, we studied the link between firm climate preparation and investment returns in a

two-date stochastic general equilibrium model. Although there has been much analysis on how

portfolio choices can mitigate climate risks for investors, and the impact these portfolio choices

have on financial market prices and returns, the question we address in this paper, related to the

impact on the cross-section of returns of actions taken by firms to mitigate or prepare for climate
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change, is new.

Our analysis is based on a parsimonious model in which the economy is populated by a

representative household and a representative firm endowed with initial capital stock and the initial

level of preparation/exposure to climate risks. The model includes a possible climate change-

induced event that can occur on the second date and cause firm-specific damage. The firm

engages in two distinct investments: investment in climate preparation and physical investment.

Our analysis shows that, in equilibrium with an interior solution, the expected return on equity

is positively related to the firm’s initial climate preparation. Moreover, a high initial climate

preparation leads to a low or zero E investment. Those relationships are robust to changes in

model parameters.

Our theoretical implications are supported by empirical evidence. Based on the E-score

provided by MSCI, a measure that is a suitable proxy for the variable in our model, we construct

a climate preparedness factor, the E factor, using the 3 by 2 sorting method. We show that

this E factor has a positive risk premium during the sample period, which is consistent with the

implications of our theoretical model. This risk premium is high, second only to the market factor

when we exclude data from the pandemic years.

Our theoretical model suggests that a five-factor empirical asset pricing model consisting of the

market factor and factors corresponding to the E score, profitability, size, and investment, can be

used to price traded equity-based assets. On a large set of test assets consisting of stocks, ETFs and

portfolios, we show that the model with the E factor improves on the model without the E factor,

which supports our theoretical analysis, and the positive role that the E factor can play in pricing

the cross-section.
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Appendices

A Media Climate Change Concerns

We assume that the climate preparedness function exhibits concavity. Consequently, firms with

low e-scores should spend more on the E investment, although such data is not available. To

justify this assumption, we examine firm behavior as the probability of a CE changes. Given the

concavity of the E investment, firms with low e-scores derive greater marginal benefits from these

investments. Therefore, these firms are more likely to increase their climate preparedness efforts

when the perceived probability of a CE is high. We employ the climate concern index as a proxy

for the probability of a CE. When climate concerns are high, firms anticipate a higher probability

of such events.

We hypothesize that firms with low e-scores will respond more positively to increases in the

probability of a CE. The rationale is straightforward: as the anticipated probability of a CE rises,

firms are more incentivized to invest in climate preparedness. Given the concave nature of the

climate preparedness function, firms with low e-scores experience greater marginal returns from

these investments.

We use the Media Climate Concerns Index (MCCC) data in Ardia, Bluteau, Boudt, and

Inghelbrecht (2023) as a proxy for the probability of a CE.9 The MCCC is constructed from

U.S. newspapers and newswires. Figure A.1 plots the daily MCCC from January 2003 to 2022

August, which exhibits pronounced variability and an upward trend. Additionally, we plot the

daily Extreme Weather Index, which is more closely aligned with the concept of climate-related

events, in Figure A.2. This index displays a trend similar to that of the MCCC.

We categorize firms into two groups: (1) well-prepared firms with high e-scores, and (2) less-

prepared firms with low e-scores. We run regressions on individual stocks within each category.

9https://sentometrics-research.com/
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The dependent variable is MSCI E, and the independent variables are market value of equity (mve)

and MCCC. Our focus is on the MCCC loadings βMCCC for stocks with varying e-scores.

We define the first 20% as the top decile and the last 20% as the bottom decile. To be included

in the analysis, a stock must have at least 30 months of observation. There are 309 stocks in the top

decile (stocks with high e-scores) and 318 stocks in the bottom decile (stocks with low e-scores)

that meet this criterion. We observe significant positive MCCC loadings β̂MCCC for less-prepared

stocks, as shown in Figure A.3, where the upper panel is the distribution of β̂MCCC, and the lower

panel is the distribution of the t-statistics of β̂MCCC. For less-prepared stocks, β̂MCCC mainly falls

between 0 and 1, indicating that stocks of less preparedness to climate risks tend to have high E

investment when the climate concern is high. However, for stocks with high e-score, the MCCC

loadings β̂E do not have definite signs. In Figure A.4, the distribution of β̂E ranges from -5 to 10

with its t-statistics from -1 to 8. These results validate our hypothesis that firms with low e-scores

will respond more positively to MCCC.

Figure A.1 The Daily Media Climate Change Concerns Index (MCCC): from Jan 2003 to August
2022
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Figure A.2 The Daily Extreme Temperatures Index: from Jan 2003 to August 2022
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Figure A.3 Low-E stocks (N = 318): The distribution of β̂MCCC and its t-statistics of stocks in
the bottom E-decile
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Figure A.4 High-E stocks (N = 309): The distribution of β̂MCCC and its t-statistics of stocks in
the top E-decile
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B Figures

In Section 2.4, we study how firms’ climate preparedness influences the expected equity return.

In the corner solution where {E∗
0 > 0, I∗0 = 0}, E∗

0 is a function of e0. To examine how E[RE ] is

affected by e0, it is sufficient to explore the relationship between e1 and e0 as E[RE ] is strictly over

e1. We plot this link in Figure B.1 and observe that e0 is increasing in e0.

Figure B.1 e1 in equilibrium. This figure plots how e1, representing the level of climate
preparedness at date-1, varies with e0 within the range where E∗

0 is positive. The parameters are
set as follows: K0 = 2, Π = 1.05, a = 0.1, β = 0.98, δ = 0.1, and p = 0.2.
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