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Climate Risk Preparedness and the Cross Section

Abstract

Our paper presents a theoretical model to analyze the relationship between a company’s

expected returns and its preparation for climate risk. The model is based on a two-date investment

framework and considers the impact of a climate change-induced event (CCIE) that may occur on

the second date. The extent of damage caused by this event is dependent on the amount spent on

climate preparedness on the first date. The company has an initial capital stock, profitability, and

readiness. Our analysis demonstrates that the expected return on equity is directly proportional to

the company’s preparedness for climate change, profitability, and size, but inversely proportional

to investment. In addition, we have developed an empirical model based on five factors that can be

used to price stocks, ETFs, anomalies, and characteristics sorted portfolios.

JEL Classification: G11, G12, G14
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1 Introduction

In recent years, the growing body of scientific evidence on climate change, and the large economic

and ecological impacts from climate-related events across the globe, has stimulated numerous

empirical and theoretical studies on the effects of climate on financial markets. This paper looks

at an aspect of the problem that we believe has not been examined before. Given the way that

unpredictable climate-related events can affect resource availability (of both raw materials and

labor), disrupt supply chains, and raise the cost of capital for doing business, we ask the question of

whether spending on climate risk preparedness, with a view to making operations less vulnerable to

climate risk, has a positive or negative impact on expected equity returns. As far as we can tell, this

question is new to the literature. A naive answer to this question would state that spending on such

preparation is an expense that is not likely to be productivity-enhancing, at least in the short run.

Therefore, such spending would increase costs and lower profits with a negative impact on expected

returns. However, the impact of such spending would pay off in the event of a future climate event.

A more resilient or better prepared firm would experience a smaller output disruption and higher

profits in the bad state of the world (the one in which a climate event occurs). Thus, to understand

the connection between spending on climate preparedness and its impact on expected returns, it is

necessary to factor both effects.

To study the link between expected returns and climate risk preparation, we develop an

intertemporal general equilibrium investment-based asset pricing model. We assume that the

economy is populated by a representative household and a representative firm endowed with initial

capital stock and the initial level of preparation/exposure to climate risks. The level of preparation

is captured by a score that we call the E score. Later, we point out that the E score supplied by

MSCI, the data provider, is an empirical proxy to our theoretical E score. The firm spends on

preparation to protect against a possible climate-change-induced event (CCIE) that can occur on

the second date. If such an event happens, there is firm-specific damage that decreases in the firm’s

E-score.
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On the next date, a CCIE occurs with probability p. We assume that this event is independent

of the stochastic process of profitability at date 1 and that probability p is common knowledge.

Therefore, the firm is incentivized to invest in climate preparation because this results in less

exposure to downside risk. The representative household maximizes its expected utility over

consumption over two dates. The firm invests a fraction of capital to improve physical investment

and the rest to improve preparedness (the E score). The firm maximizes the total equity and

dividend by taking the stochastic discount factor (SDF) from the household optimization as given.

In equilibrium, we show that the model implies that the firm’s expected return depends, ceterius

paribus, positively on the E-score. This agrees with empirical evidence in MSCI data suggesting

that high E-score stocks have higher returns than low E-score stocks. Our model also implies that

the expected return of stocks increases with the profitability, keeping all other things equal.

The theoretical model developed in this paper suggests that a five-factor empirical asset pricing

model consisting of the market factor and factors corresponding to the four drivers of asset returns

in our theoretical model - the E-score, profitability, size, and investment - can be used to price

traded equity-based assets. For this empirical model, we construct the E-factor from MSCI data

covering the 2011-2022 time span. We construct those factors through a slope factor method,

which is known to satisfy the pure-play property. To illustrate, at the firm level, characteristics are

often correlated, which means that when we use double-sorting or ranking methods, we indirectly

take long or short positions in other characteristics that are positively or negatively correlated to

the one we are interested in. In contrast, the slope factors are the OLS estimates of the slopes

in Fama-Macbeth regressions of excess returns on lagged standardized characteristics and these,

by the regression property, are automatically purged off the influence of other characteristics in

the regression. Chib, Lin, Pukthuanthong, and Zeng (2021) show that the best slope factor model

outperforms the best sorted and rank factor models in the pricing of stocks, portfolios, and ETFs.

We call our 5-factor model the CLP5 model. To evaluate the effectiveness of the E factor

in pricing the cross section, we consider the CLP4 variant that simply omits the E factor from
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the CLP5 model. In this way, we can determine the contributing role of the E factor. Then,

using the framework of Chib and Zeng (2020) and Chib, Zeng, and Zhao (2020), we evaluate the

empirical support for these two models and find that the CLP5 model is better supported by the

data. Moreover, the CLP5 model shows promise in pricing the cross section. Using 3,116 stocks

as test assets, where each test asset has at least 60 months of data, we find that the CLP5 prices

2566 of those stocks at posterior odds of at least 2:1, more than are priced by the CLP4 model.

The outperformance of the CLP5 in pricing cross-section assets still persistent when we use ETFs

and anomalies from various sources as testing portfolios.

The remainder of the paper is organized as follows. Section 2 builds an investment-based

asset pricing model that incorporates climate change-induced events (CCIE) and the firm’s level of

climate risk preparedness. In Section 3, we provide evidence that the MSCI E-score differs from

the E-score reported by other ESG rating providers and that the MSCI E-score can be interpreted

as a measure of climate risk preparedness. We then construct the E factor and report summary

statistics of the E factor as well as other prominent factors in the literature. Section 4 checks the

cross-sectional pricing ability of the CLP5 factor model. Section 5 concludes the paper.

2 Theoretical Model

In this section, we develop a new two-date stochastic general equilibrium model, inspired by the

literature on production-based asset pricing (Cochrane (1991) and Cochrane (1996)), in which the

firm mitigates exposure to climate change by proactive spending on climate preparedness. In a

production-based asset model, asset returns are linked to marginal transformation rates obtained

from the optimal intertemporal investment decision. We measure this preparedness generically in

terms of what we call the E-score. The firm invests in this preparedness because of a possible

climate change-induced event (CCIE) on the second date that causes damage that is inversely

related to the level of preparation. Therefore, the firm is incentivized to spend on climate

preparedness because this results in lower risk exposure to such an event.
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A representative household and a representative firm populate the economy. We label the

two dates as date 0 and date 1. The firm’s profitability in date 1 is subject to a random process.

Furthermore, the production is subject to a CCIE shock, similar to that documented in studies

Barro (2006) and Barro (2009). The probability is the known amount 0 < p ≤ 1, where p is a

constant. In the CCIE at date 1, a portion of production will be destroyed. The damage function

depends on climate preparedness and E scores. A well-prepared firm is less exposed to CCIE. The

distribution of the CCIE shock is given by

probability 1− p : Y1 (1)

probability p : [1−δ (e1)]Y1 (2)

where Y1 represents the firm’s production at date 1, δ (e1) is the damage function, with e1 as the E-

score of the firm at date 1, and δ ′ < 0. Let f (e1)≡ 1−δ (e1). A high f (e1) implies that preparation

limits the damage caused by CCIE. For tractability, we suppose that the climate preparation

function takes f (e1) = κe1, increasing linearly in e1, where κ > 0 is a constant parameter. To

keep 0 < f (e1)< 1, we will set the upper bound of κ .

2.1 Technology

The firm produces a single commodity consumed by the representative household or invested. The

firm starts with an initial productive asset, K0, profitability Π0, and an E score, e0. The operating

cash flow of the firm at date 0 is Y0 = Π0K0. The operating cash flow D1 at date 1 depends on the

occurrence of the CCIE shock, taking the form.

D1 =


Π1 f (e1)K1 CCIE = 1

Π1K1 CCIE = 0
(3)
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Given the initial e0, we suppose that the E scores evolve according to the specification

e1 = e0 +
E0

c(I0 +K0)
(4)

where I0 denotes physical investment, E0 denotes investment to improve the E score, and c > 0 is

a constant parameter. The latter investment is not capital-enhancing, but reduces vulnerability to a

CCIE. K1 = I0 +K0 denotes the capital at date 1. Eq.(4) shows that the E score increases with the

E investment per capital unit.

2.2 Assets and asset prices

All decisions are made at date 0. The date-1 profitability is described by a random variable Π1.

Uncertainty of profitability comes from a state variable s, which can take one of N values in S =

{s1, . . . ,sN}. The firm’s profitability has support {Π(s1), . . . ,Π(sN)} at date 1. Let define the asset

and asset prices extending over all N states prior to the CCIE shock.

Definition 1: An asset is a contingent claim that pays one unit of the consumption good (the

numeraire) in the state of the world s.

Definition 2: An asset price at date 0 is the price of the asset that pays one unit of consumption if

the state s is realized.

Before the occurrence of the CCIE shock, we can characterize the existence of N Arrow-

Debreu assets along with their corresponding prices. In equilibrium, despite having only one

representative household and firm, these Arrow-Debreu assets are not actively traded; however, we

can still determine their prices. These prices serve as a basis for deriving the stochastic discount

factor (SDF). Specifically, the SDF can be expressed as the ratio of the price of an Arrow-Debreu

asset in a given state to the price of the same asset in a reference or numéraire state. The firm

generates π1(s)K1 units of consumption in state s on date 1. Based on Definition 1 and Definition

2, the output price is q0(s)π1(s)K1 at state s. The firm takes the price of asset q0(s) as given when
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deciding the aggregate investment and the amount of dividend distributed to the household.

However, a shock that says that a CCIE will occur at the probability of p at date 1, arrives

after the firm’s decision on aggregate investment. In particular, the set of N Arrow-Debreu assets

that existed before the CCIE shock does not constitute a complete market, which describes the

case where Arrow-Debreu assets exist for all states. Specifically, Arrow-Debreu assets do not exist

for states in which the CCIE shock occurs. These states with the CCIE shock are unanticipated

when contingent claims are traded. One way to interpret this assumption is that it is either

prohibitively costly to introduce new assets or, even if the agent possesses all the necessary

information, it is too expensive to incorporate every piece of information due to considerations

such as rational inattention in the literature. This assumption simplifies our calculation process,

allowing us to derive analytical results to determine the optimal allocation of investments between

E (environmental) and physical investments. With this simplification, we can compute the

explicit optimal ratio of E investment to physical investment in various states. Importantly,

this simplification does not alter the core narrative of our analysis, as our primary focus is on

elucidating how characteristics of E, along with other firm’s characteristics impact returns, rather

than quantifying the precise magnitude of these effects.

We assume that the CCIE shock is independent of the stochastic process of profitability Π1.

Consequently, this results in a total of 2×N discrete states within our model. Let S∗ represent the

set of all states, such that S∗ = {s1, . . . ,sN ,s1∗, . . . ,sN∗}. Here, the subset s1, · · · ,sN corresponds to

the scenarios where CCIE equals 0, while s1∗, . . . ,sN∗ pertains to the scenarios where CCIE equals

1. In this market, there are N distinct Arrow-Debreu assets. Let q0(s) denote the date-0 asset price

that pays 1 unit of consumption if the state s is realized. The determination of q0(s) is made in

the absence of information on CCIE shocks, which implies that these prices are fixed before the

realization of such shocks and remain unchanged thereafter. In response to this information, the

representative firm then makes decisions on investments in E and physical capital.

We assume that the firm is entirely owned by the representative household, which acts as the
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sole producer and consumer within this model. Firm production yields a single commodity that

can be consumed by the representative household or invested. The representative household seeks

to optimize a two-date, time-additive utility function. This utility function captures the household’s

preferences over consumption across two dates, reflecting the trade-offs the household makes

between immediate consumption, future consumption, and investment decisions.

U = u(C0)+β ∑
s∈S

π(s)u(C1(s)) (5)

in which β is the subjective discount factor of the representative household, C0 and C1 are

consumption in dates 0 and 1, respectively, and π(s) is the probability of profitability in state s

at date 1 with ∑s∈Sπ(s) = 1. Asset prices and the rate of return are determined by the first-order

condition for consumption, which is written as

u′(C0) = β ∑
s∈S

π(s)u′ (C1(s)) (6)

The stochastic discount factor, before the information related to the CCIE shock, takes the form

m(s)≡ βu′(C1(s))
u′(C0)

. The usual first-order conditions give the asset prices

q0(s) = βπ(s)
u′(C1(s))

u′(C0)
= π(s)m(s) (7)

From Eq.(7), q0(s)/π(s) is equal to the SDF, which is the price of one unit of consumption in the

state s per unit of probability. It is also called a state price density or a price kernel.

2.3 The firm’s optimization problem

This section presents steps and derivations of the optimization problem of the firm. Initially, agents

in the market have information about the stochastic process Π1. Before the CCIE shock, we

characterize the existence of N Arrow-Debreu assets and their corresponding prices. The firm
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determines the aggregate investment and dividend distributed to the household (say, consumption).

Subsequently, as the second step in this sequence, the CCIE shock comes into play. The firm makes

decisions regarding the allocation of aggregate investment, which has been determined in the first

step to environmental and physical investment.

First-order conditions. The firm chooses a production plan for sales C0, physical investment I0,

and E investment E0 to maximize its date-0 contingent claim value, given initial capital stock K0

and initial E-score, e0 and a sequence of contingent claims prices q0(s)

[
Π0K0 −G0 −

a
2

(
G0

K0

)2

K0

]
+max ∑

s∈S
q0(s)[(1− p)K1Π1(s)+ p f (e1)K1Π1(s)] (8)

subject to

Production: Y1 = Π1K1|CCIE =0 Y1 = f (e1)Π1K1|CCIE=1 (9)

Resources: Y0 =C0 +G0 −
a
2

(
G0

K0

)2

K0 Y1 =C1 (10)

E-score accumulation: e1 = e0 +
E0

c(I0 +K0)
(11)

Capital accumulation: K1 = I0 +K0 (12)

Total investment: G0 = I0 +E0 (13)

Based on the timing, we solve the firm’s maximization problem backwardly. Given the

aggregate G0, the firm chooses I0 and E0 in the second stage by comparing marginal costs and

benefits. Let τ ≡ E0/I0, and then we can write

E0 =
τ

1+ τ
G0 and I0 =

1
1+ τ

G0 (14)
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The marginal costs of I0 and E0 are

(
1+a

G0

K0

)
τ

1+ τ
and

(
1+a

G0

K0

)
1

1+ τ
(15)

, respectively. The marginal benefits of I0 and E0 are

(1− p)∑
s∈S

q0(s)Π1(s)+ p
[
κe1 − τ

κ

c

]
∑
s∈S

q0(s)Π1(s) and p
κ

c ∑
s∈S

q0(s)Π1(s) (16)

In equilibrium, marginal benefits equal marginal costs. From Eq. (15) and Eq. (16), we have

pκ/c = τ[pκe0 +(1− p)]. Then, we can rewrite it as

τ =
κ

c(κe0 +(1− p)/p)
(17)

τ depends on initial E-score e0, c, κ and p. In particular, τ increases with p. When p is larger, the

firm is willing to invest more in E-score improvement. When p = 1, τ = 1/ce0.

We make three additional economically reasonable assumptions.

Assumption 1. Suppose a positive initial e-score, i.e. e0 > 0.

According to Eq. (17), e0 < 0 generates negative τ when p = 1. In such cases, the firm is less

likely to enhance its E-score.

Assumption 2. ∂e1
∂e0

> 0.

This assumption indicates that the firm with a high initial e-score will have a high e-score at

date 1.

Assumption 3. κ < 1/(e0 +1/c)

Assumption 2 implies that ∂e1
∂e0

= 1− κ

c2
κ

(κe0+(1−p)/p)2 = 1− τ2 > 0. To make economic sense,

τ > 0. Therefore, we have τ < 1. Combined with the above assumptions, e1 = e0+τ/c < e0+1/c

from Eq. (4). κ < 1/(e0 +1/c) guarantees that κe1 < 1.
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Lemma 1 τ is decreasing with initial e0.

Lemma 1 is directly obtained from Eq. (17). A high initial e0 will indicate a low ratio of E

investment.

With τ , in the first stage, the optimality condition for investment is

1+a
G0

K0
=

1
1+ τ

∑
s∈S

q0(s)[pΠ1(s) f (e1)+(1− p)Π1(s)]

=
1

1+ τ
[(p f (e1)+(1− p))]∑

s∈S
q0(s)Π1(s) (18)

The return on aggregate investment, therefore is

R =


Π1 f (e1)/(1+ τ)[1+a(G0/K0)] CCIE = 1

Π1(1+ τ)/[1+a(G0/K0)] CCIE = 0
(19)

The expected return on aggregate investment is

E0R =
p f (e1)E0Π1 +(1− p)E0Π1

(1+ τ)[1+a(G0/K0)]
(20)

Proposition 1: The expected return of investment positively links to the initial E-score, e0, ceteris

paribus, where e0 depends on p, c and κ .

Assumption 2 implies that high e0 generates high e1. e1 appears positively on the right side of

Eq. (20). Eq. (17) shows that high e0 produces low τ . The term 1/τ on the right side positively

links to e0. In summary, given expected profitability, initial capital, and investment levels, the firm

would earn a high expected return with high E-score.

Proposition 2: The expected return on the firm’s stock increases with the profitability Π1, given

initial capital, investment level, and e-score.

Proposition 2 says that with other factors kept constant, the expected returns increase with
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profitability. Intuition is exactly analogous to the intuition underlying the E score-expected return

relation.

Proposition 3: If a CCIE has p = 0 probability of occurring on date 1, the firm will not invest in

improving the e-score, that is, E0 = 0.

Eq. (16) implies that the marginal product of the E investment is 0, while a positive marginal

product of physical investment. Therefore, the firm will not invest in improving e-scores. We have

a corner solution when p = 0 with E0 = 0. Proposition 3 shows that when the economy has no

climate risk, our model reduces to an ordinary investment-based asset pricing model.

3 Data and methodology

3.1 MSCI E-score as a proxy of climate preparedness

In this study, we focus on the effects of the firm’s climate preparedness. MSCI E score can

work as a proxy for climate preparedness. The MSCI E-score measures a firm’s preparedness

to handle climate risks and exposure. It assesses firm-level vulnerability to climate effects and

the preparedness of management to tackle those exposures. MSCI’s Environmental pillar covers

four themes, including climate change, natural capital, pollution & waste, and environmental

opportunities across thirteen environmental issues, and its aggregated E-score measures the firm’s

exposure to risks or opportunities and its ability to manage those exposures.

A large and growing literature in finance has begun to examine the importance of climate risks

on asset prices and returns using environmental, social, and governance (ESG) criteria. There is a

divergence between different raters due to unique methodologies and different ways of measuring

and aggregating ESG attributes (see, for example, Berg, Koelbel, Pavlova, and Rigobon (2022a)

and Berg, Koelbel, and Rigobon (2022b)). The leading ESG raters include Kinder, Lydenberg, and

Domini (KLD), Sustainalytics, Moody’s ESG, S&P Global, Refinitiv, and MSCI. Among these,
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MSCI is the largest ESG provider globally, covering a wider range of companies.

Our study focuses on the environmental component of ESG. However, the meaning and

measurement of the E score varies by provider. Some providers interpret “E” as a measure

of a firm’s ”greenness” and the impact of its activities on the environment, including aspects

such as the use of natural resources and waste generation. For instance, the “E” in Thomson

Reuters’ Refinitiv data set pertains to resource use, emissions, and innovation. The MSCI E-

score, on the other hand, is a measure primarily of a firm’s preparedness to handle climate

risks and exposure. It assesses firm-level vulnerability to climate effects and the preparedness

of management to tackle those exposures. Specifically, MSCI’s Environmental pillar covers

four themes, including climate change, natural capital, pollution & waste, and environmental

opportunities across thirteen environmental issues, and its aggregated E-score measures the firm

exposure to risks or opportunities and its ability to manage those exposures. Certain providers,

such as S&P Global, adopt a more comprehensive approach and consider both dimensions. S&P

Global’s CSA criteria use a weighted system across multiple dimensions such as climate strategy,

environmental policy & management systems, environmental reporting, operational eco-efficiency,

and product stewardship.

As an illustration of how different ESG ratings prioritize different aspects within the same

category, Table III of Berg et al. (2022b) offers a comparison of indicators that rating agencies

assign to the water category. Refinitiv’s water category assigns indicators including Emission

Reduction/Discharge into the Water System, Resource Reduction/Water Recycling, and Resource

Reduction/Water Use. On the contrary, the MSCI water category score is linked to the firm’s water

stress management capacity.

According to Eccles and Stroehle (2018), MSCI is the world’s largest provider of ESG ratings,

covering more firms than other ESG rating providers. Therefore, in line with many other academic

studies, we obtain MSCI firm-level environmental scores. As in Pástor, Stambaugh, and Taylor

(2022), our sample date starts from November 2012, the month after MSCI began covering small
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US stocks, leading to a large increase in coverage of the firm. Our sample date ends in June 2022.

The E score is the MSCI variable “environmental pillar score”, which measures the weighted

average score in 13 environmental issues. Because we are interested in the level of climate risk

preparedness, the E score is not adjusted by the “Environmental pillar score”. We merge the E

score data with the firms from CRSP that have share code 10 or 11. Financial firms with SIC

6000-6999 are excluded.

3.2 The E factor

The most common way to construct characteristics-based factors is to form long-short portfolios

sorted by underlying characteristics. We apply the slope factor methodology (see Chib et al. (2021)

for the details). The slope factor method involves constructing factors by performing Fama and

Macbeth cross-sectional regressions of firm-level returns on firm-level lagged characteristics. In

these regressions, the OLS estimates of the slopes represent long-short portfolios that give unit-

weighted exposure to each standardized lagged characteristic and zero-weighted exposure to all

other standardized lagged characteristics. This means that these OLS estimates of the slopes are

portfolios specific to a particular characteristic and remove the influence of other characteristics

included in the regression.

Slope factors, sorted factors, and rank factors have significant differences. The reason we use

slope factors to construct factors is that they are better at pricing assets. The key property of slope

factors is pure play. It is noteworthy that firm characteristics are correlated. Therefore, when we

use rank or double-sort, we take long positions in firms with high characteristic values, which

indirectly means we also take long positions in any positively correlated characteristic. Similarly,

when we take short positions on firms with low characteristic values, we indirectly take short

positions in any negatively correlated characteristic. Thus, double-sort and rank methods include

returns to positions that are correlated with the characteristic of interest. In contrast, the slope

factor method is based on the regression of returns on lagged standardized characteristics, which
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elegantly overcomes this problem.

3.3 Summary statistics of factors

This section presents summary statistics of our constructed E factor and other relevant factor

portfolios. Panel (A) in Table 1 reports the mean, standard deviation, t statistic, and Sharpe ratio

of the constructed slope factors from January 2011 to November 2022. The market factor exhibits

the highest Sharpe ratio. Our constructed E factor has a low Sharpe Ratio. When examining

risk premiums, a similar pattern emerges. The market factor possesses the highest risk premium.

However, when we exclude the effect of the Pandemic, the Sharpe ratio of the E slope factor is

high, as shown in Panel (B) in Table 1. In terms of correlation, E is most correlated with sf.agr at

52.5% and least correlated with sf.mve at 1.6% in absolute. sf.agr has the highest correlation with

sf.operprof at 53.3% in absolute.

Table 1 Factor premiums: mean, standard deviation, t-statistic, and Sharpe Ratio

Mean SD t-statistic SR

Panel (A): January 2011 - December 2022

MktRf 0.96 4.36 2.65 0.21
sf.e 0.04 1.20 0.38 -0.01

sf.mve -0.03 0.89 -0.34 -0.08
sf.agr -0.10 0.99 -1.24 -0.15

sf.operprof -0.04 0.52 -0.94 -0.17

Panel (B): January 2011 - December 2020

MktRf 1.15 4.12 3.05 0.27
sf.e 0.20 1.04 2.07 0.15

sf.mve -0.05 0.89 -0.57 -0.10
sf.agr 0.03 0.80 0.39 -0.02

sf.operprof -0.09 0.48 -2.03 -0.28
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Table 2 Correlation matrix of a slope factor set

MktRf sf.e sf.mve sf.agr sf.operprof

Panel (A): January 2011 - December 2022

MktRf 1
sf.e -0.17 1

sf.mve -0.48 -0.02 1
sf.agr 0.25 0.53 -0.28 1

sf.operprof -0.09 -0.30 0.28 -0.53 1

Panel (B): January 2011 - December 2020

MktRf 1
sf.e -0.19 1

sf.mve -0.59 0.09 1
sf.agr 0.23 0.41 -0.26 1

sf.operprof -0.15 -0.17 0.20 -0.54 1

4 Pricing of the cross-section

Our theoretical model posits that the expected return on investment is influenced by several key

firm characteristics, including firm size, investment, profitability, and climate preparedness.

Rei,t = βi,MktMktt +βi,s.es.et +βi,s.mves.mvet +βi,s.agrs.agrt +βi,s.operpro f s.operproft + εi,t (21)

where Rei,t is the excess return on equity of firm i. Mkt denotes the market factor, s.mve is the

size factor, s.agr is the investment factor, s.operprof is the profitability factor and s.e is the climate

preparedness factor.
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4.1 Pricing stocks

In the Bayesian pricing test, every test asset is examined individually by the factor model. Let the

excess return of a test asset be re. The asset is priced by the factor model x∗ if

re = β′
0x

∗+ ε0, (22)

and mispriced if

re = α +β′
1x

∗+ ε1. (23)

In the frequentist pricing test, one estimates the latter model and tests the null hypothesis of

no mispricing, i.e., α = 0. If the estimate of α differs significantly from zero, one rejects the

null, and the asset is deemed not-priced. In the Bayesian approach, both models are estimated

and their log-marginal likelihoods are compared. Let m0 denote the log-marginal likelihood of the

regression model with correct pricing given in (22), and m1 denote the log-marginal likelihood of

the regression model of mispricing given in (23), given the data. Then, the probability that the risk

factors price the asset given the data is

Pr(re is priced by x∗|Data) =
1

1+ e−d (24)

where d = m0 −m1 is the difference in log-marginal likelihoods. An asset is priced at posterior

odds of 2:1 (priced:mispriced) if the probability in equation (24) is at least 0.667 (d ≥ 0.693). It is

priced at posterior odds of 3:1 if the probability is at least 0.75 (d ≥ 1.09) and priced at posterior

odds of 4:1 if the probability is at least 0.8 (d ≥ 1.38).

We consider pricing a sample of 3116 stocks (CRSP share codes 10 and 11) ranging from

January 2011 to December 2022, and we ensure that there are at least 60 months of observations

within this time frame on any given stock. Financial firms (SIC between 6000-6999) and firms with

negative book equity are excluded. Stocks with prices per share lower than $5 are also excluded.
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Benchmarking pricing performance on stocks is helpful, given that these assets tend to be more

volatile than portfolios, posing a more significant hurdle. Table 3 compares the proposed empirical

model with the E slope factor and without the E slope factor. As can be seen from the table, under

the 4:1 criteria, 1521 out of 3116 stocks are priced by CLP5, and 1445 out of 3116 stocks are priced

by CLP4, respectively. The CLP5 model also performs best compared to other models under the

2:1 and 3:1 criteria when pricing stocks and has lower unpriced stocks in all odds. E factor helps

to improve pricing ability.

We also consider the sample of 948 ETFs. We obtain data on all exchange-traded funds from

the CRSP stock database identified by their share code 73. As ETFs are securities according

to the CRSP stock database and funds according to the CRSP Survivor-Bias-Free Mutual Fund

database, we can obtain both the fund’s price and holdings information, which we match by

Cusip. We confirm that the funds are ETFs by retaining only funds with the ” F ” ETF flag in

the CRSP mutual fund database. We retain only equity ETFs, with Lipper asset code EQ in the

CRSP mutual fund database. In addition, we exclude foreign and global ETFs as described by

excluding ETFs with a Lipper Class Name containing a country or global region name or the

words “global” or “international.” Finally, we read through each ETF name and remove levered

and any remaining international ETFs. The levered ETFs are usually very small compared to their

unlevered counterparts.

ETFs are diversified portfolios that are liquid, transparent, and cheap to trade. As a result, the

premium of these assets is likely to be determined by exposure to the common non-diversifiable

sources of risk manifested in the risk factors. Table 3 compares the proposed model with the E

slope factor and without the E slope factor. Under the 2:1 criteria, CLP5 prices 664 out of 948

ETFs, while CLP4 prices 557 out of 948 ETFs. The CLP5 model also performs better than CLP4

under the 3:1 and 4:1 criteria when pricing 948 ETFs and having higher priced assets.

In addition to the ETFs and stocks, we use anomalies used in Hou, Xue, and Zhang (2020)

(HXZ anomalies) and decile portfolios from Chen and Zimmermann (2021) (CZ anomalies),
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an independent source not associated with any factors. In particular, we construct long-short

portfolios using the top minus the bottom for the CZ anomalies and remove anomalies with missing

data. The results from these assets remain intact, as shown in Table 3. Notably, CLP5 prices more

portfolios and unprices fewer assets than CLP4, suggesting that the E factor improves the pricing

ability of the model.

Table 3 Bayesian pricing results on a large collection of test assets: # of assets being priced

Risk factors set # priced at 2:1 # priced at 3:1 # priced at 4:1
3116 Stocks

CLP5 2566 2077 1495
CLP4 2449 1929 1371

948 ETFs
CLP5 664 494 315
CLP4 557 412 258

188 HXZ anomalies
CLP5 101 61 34
CLP4 68 39 23

185 CZ anomalies
CLP5 115 71 43
CLP4 94 57 33

5 Conclusion

In this paper, we have compared various ESG raters and justified that MSCI E represents climate

risk preparedness. Precisely, MSCI E score measures climate risk exposure, which assesses the

potential exposure of a company to environmental risks, and management, which evaluates how

effectively a company is managing its identified environmental risks. Motivated by the fact that

MSCI E associates with climate risk preparedness, we built a theoretical two-date investment-based

asset pricing model to examine the link between firm-level expected return and its preparedness

for climate risk.

Two new features define this model. One is a theoretical counterpart of the MSCI E-score,

which measures the firm’s preparedness/exposure to climate risks. The other includes a possible

climate change-induced event (CCIE) on the second date that causes firm-specific damage. Our
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model implies that the firm’s expected return depends, ceterius paribus, positively on the E-score.

This agrees with empirical evidence in MSCI data suggesting that high E-score stocks have higher

returns than low E-score stocks.

We constructed the E factor and other factors through the slope factor method. Our CLP5

model shows promise in pricing the cross-section using 3,116 stocks, 948 ETFs, HXZ anomalies,

and CZ anomalies as testing assets. E factor helps improve pricing ability. For these test assets,

the CLP5 model shows superior pricing performance. E factor helps to improve pricing ability at

2:1, 3:1, and 4:1 criteria.
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