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The accuracy of cross-sectional return predictions using machine learning 

regressions has been validated by studies conducted by Gu et al. (2020) and Chen 

et al. (2023). However, the opacity of machine learning can make it difficult to 

comprehend its predictive power. To gain a deeper understanding of the 

predictability of companies, we have employed classification methods to forecast 

cross-sectional return deciles. This offers a fresh perspective on how machines 

make predictions and how uncertainty can affect their accuracy.  

The conventional approach to modeling returns involves minimizing the 

difference between estimated and realized returns, but this does not shed much 

light on the stock allocation decision-making process. We better understand the 

return states and their transitions by quantifying returns as deciles and directly 

modeling the portfolio allocation process. This alternative approach gives us a 

more comprehensive understanding of the capabilities of machine learning. 

This paper focuses on tree models and neural networks due to their superior 

performance and our objective of understanding machine learning return 

predictability. We argue that our predictions represent publicly available 

information by synthesizing information based on a comprehensive set of 

characteristics. Through head-to-head comparisons and grid searches with a wide 

range of candidate parameters, we indicate that classifiers are better at placing 

individual stocks into correct future deciles with a precision of over 15% compared 

to machine learning regressions, which achieve a precision of 12%.2 Our analysis 

shows that machines achieve higher precision in center predictions and return 

 
2  Both our classifiers and their benchmark machine learning regressions deliver statistically meaningful 
prediction precision compared to the precision of the naïve classifier at 10%. The naïve classifier is the raw 
benchmark in machine learning that predictively assigns each observation to the majority class and provides 
a benchmark of 10% in our case. Models producing higher precision than the naïve classifier are considered 
as producing statistically significant predictability. This comparison is similar to the comparison between the 
numerical predictions against the historical means in Goyal and Welch (2007) or Gu et al. (2020).  



3 
 

distributions' tails, with a more pronounced imbalance in the lowest return decile. 

Aggregated predictions based on individual classifiers deliver 49% precision and 

resonate with the arbitrage asymmetry.3  Additionally, using exogenous shocks, we 

demonstrate that a sudden increase in macroeconomic uncertainty promptly 

affects the machine's prediction precision at the aggregated level, causing it to 

instantaneously slump.4 

Based on our examination of the transition matrix, we find that there is an 

imbalance in the transition of return states in deciles. When compared to a random 

distribution, transitions from extreme deciles to other extreme deciles and from 

middle deciles to other middle deciles are more certain, deviating from the random 

distribution by about 1%. For instance, there is a 1.8% probability of transitioning 

from the lowest decile to the highest decile. The classifiers utilize this nonlinearity 

in the transition probabilities to achieve the highest performance in both the 

middle and extreme deciles. We also use Shannon (1948)'s information entropy to 

measure the information incompleteness, which represents the expected minimum 

number of binary questions required to eliminate prediction uncertainty. Our 

findings show that the information incompleteness replicates the nonlinear 

structure of the transition matrix of return deciles as proposed by Shannon (1948).5 

Overall, we confirm that machines benefit the most from the least uncertain 

predictions.6 

 
3 For example, see Dong et al. (2021) and Stambaugh et al. (2015). 
4 We adopt shocks that are not obviously endogenous, including 9-11 attack, Hurricane Katrina, Hurricane 
Maria, and COVID-19 outbreak. 

5 Because it measures the expected minimum binary questions that need to be answered to completely resolve 
the prediction uncertainty, the unit of the information incompleteness is “bit”, the standard unit of 
information. Firms with greater information incompleteness thus require more information to resolve return 
prediction uncertainty. 

6  Such heterogeneity in return predictability can signal different levels of market efficiency, i.e., market 
efficiency level is a function of firm characteristics. 
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According to our predictions, the long-short portfolios with monthly 

rebalancing can achieve a 5-factor adjusted alpha of 2.1%, Sharpe ratios as high as 

2.72, and average monthly excess returns above 2.3%. Our models' statistical and 

economic performance highlights their ability to capture the market prediction 

accurately.7  

We use the prediction success variable to examine which characteristics 

increase or decrease prediction precision. This dummy variable has a value of 1 

when the realized return decile matches the predicted return decile. Variables such 

as change in momentum and return on assets contribute to the precision of 

machine predictions. Shannon's information entropy is used to measure 

information incompleteness, which shows that predictors like firm age and change 

in momentum reduce information incompleteness. However, predictors such as 

analyst forecast dispersion increases the information's incompleteness. 

We are exploring the consequences of predictable returns from machine 

learning using new measures of prediction precision and information 

incompleteness. Our focus is on the impact on pricing and the corporate 

information environment. The process of predicting returns reflects uncertainty in 

the available information. To measure this, researchers have used variables such as 

firm age and analyst forecast dispersion to proxy the difficulty in forecasting firm 

value due to information uncertainty. The findings are mixed, with some studies 

showing a negative association between information uncertainty and stock returns, 

while others predict the opposite.  

We argue that information uncertainty comprises two componenetns: 

information incompleteness and prediction precision and they specifically related 

 
7  Holding everything equal, the classifiers deliver performance that is comparable if not better than the 
machine learning regressions both statistically and economically. 
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to return predictions. We confirm the theoretical prediction that lower prediction 

precision or higher information uncertainty leads to higher stock returns. Our 

empirical evidence supports this finding, with both variables showing a negative 

relationship to future returns at the stock level. Specifically, a 1% increase in the 

past 12-month prediction precision is related to a 0.02% reduction in the stock 

return. We also show a single-bit increase in the information incompleteness in 

terms of information entropy is connected to a 4-5% reduction in the future stock 

return. Additionally, we demonstrate that the information incompleteness based 

on predicted probabilities for the next period is negatively related to the prediction 

precision in the next period at the individual stock level. 

Easley and O’Hara (2004) suggest that firms can endogenously choose the 

information environment to achieve specific goals, such as deciding the cost of 

capital. For example, Clement et al. (2003) show that firms can voluntarily disclose 

management’s earnings forecast, reducing the information uncertainty and 

influencing pricing and analysts. In our test on the information environment, we 

examine the relation between our information uncertainty measures and firm-level 

accounting quality using firm-year data.  

We show that the accuracy of predictions has little impact on accounting 

quality. Instead, it positively affects Altman's Z Score and improves the financial 

stability of a company. However, incomplete information negatively correlates with 

all our accounting quality measures. This includes statements that are difficult to 

understand, a greater likelihood of fraudulent accounting, and lower financial 

stability (Bonsall et al., 2017; Dechow et al., 1995; Altman, 1968). Most significantly, 

for every increase of one bit in information incompleteness, a company's risk for 

restatement increases by 5%, which is a major concern for accounting quality. 
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A significant issue to consider is the connection between the predictability 

of returns and the quality of a company. To begin, we examine firms that are 

difficult to predict due to incomplete information. Our findings indicate that 

companies that are hard to predict typically have a better governance structure 

and a CEO with decentralized power. These firms are typically larger and have 

better outcomes regarding governance. They take fewer risks, comply better with 

non-financial regulations, and are less prone to external attacks.8 As a result, they 

tend to have better stakeholder approval, as evidenced by fewer litigation cases. 

Conversely, predictable firms are usually smaller and take higher risks. They also 

receive more disapproval from stakeholders, particularly shareholders. 

How might financial regulators respond to the variation in return 

predictability? As we examine the information environment, we aim to uncover 

how regulators will react. This will enable us to gain a better understanding of the 

economic significance of (un)predictable returns. On one hand, the SEC's primary 

objective is to safeguard investors. When predictability decreases, investors' 

profitability suffers, and this can result in increased scrutiny. Additionally, the 

correlation between return predictability and accounting quality can cause the SEC 

to scrutinize unpredictable firms more intensely, especially given the existence of 

the Accounting Quality Model as an enforcement targeting filter (AQM). 9  On the 

other hand, the SEC also seeks to maintain efficient markets, and predictability is a 

sign of inefficiency. 

Our study involves analyzing the SEC comment letter, SEC investigation in 

secrecy, and the fraud period of the SEC’s Accounting and Auditing Enforcement 

 
8  We proxy risk-taking (non-financial regulation/external attacks on operation) by R&D expenditure 
(Environment Protection Agency’s enforcement/cyberattack). 
9 See the speech given by Lewis, the Chief Economist and Director of the Division of Risk, Strategy, and Financial 
Innovation at the SEC: https://www.sec.gov/news/speech/2012-spch121312cmlhtm. 
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Release (AAER) actions by means of dummy variables. Our findings indicate that 

our first hypothesis regarding investor protection holds true. We find that 

companies with higher accuracy in their predictions are less likely to receive SEC 

comment letters for their 10K filings. On the other hand, companies with 

incomplete information are at a greater risk of receiving comment letters and being 

investigated. A one-bit increase in information incompleteness leads to a 10% rise 

in the chances of receiving the SEC’s comment letter and a 7% increase in the risk 

of the SEC’s private investigation, which can lead to enforcement actions. 

Through thorough analysis, we create investment portfolios based on our 

aggregated predictions. We formed two portfolios using stocks with the top 10% 

prediction precision and the bottom 10% information incompleteness. By doing so, 

we anticipate that our conditional portfolios will perform better if our measures 

accurately capture return information uncertainty. The performance of our 

conditional portfolios exceeds our expectations. The long-short portfolios' average 

monthly return based on past 12-month precision is an impressive 62.3%, with a 

Sharpe ratio of 13.47 in an equal-weight scheme. The value-weighted portfolios 

have also performed comparably. Additionally, the long-short portfolios' monthly 

returns based on information incompleteness are as high as 7% for equal weights 

and 6% for value weights. These findings highlight the importance of momentum 

in prediction precision and information incompleteness. Stocks that are easy to 

predict in the past are more likely to remain predictable in the future. 

This paper is organized as follows. Section 1 discusses the related literature. 

Section 2 describes the empirical modeling and introduces the measures. Section 

3 reports the modeling performance and portfolio performance. Section 4 first 

analyzes the relation between prediction precision and the predictors and then 

discusses the relation between return and our predictability measures. We also 
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report the portfolio performance conditional on precision and information 

incompleteness. Section 5 reports the performance of the enhanced portfolios 

from the classification conditional on precision and information incompleteness. 

Section 6 analyzes the information environment of firms with respect to return 

predictability. Section 7 concludes the paper. 

1. Related Literature 

This research paper makes three contributions to the finance and 

accounting literature. Firstly, we present a novel approach to the cross-sectional 

return prediction problem by framing it as a machine-learning classification 

problem. This provides an alternative perspective on return predictions and 

contributes to the application of machine learning in asset pricing. The literature 

has traditionally focused on modeling returns directly, which limits our 

understanding of potential angles and does not reflect the portfolio allocation 

decision-making process. However, our research demonstrates that the direct 

modeling of return states is a viable strategy, despite concerns about the loss of 

information when modeling returns as categorical variables. 

Secondly, previous literature on asset pricing has predominantly used 

machine learning regressions. For example, Gu et al. (2020) and Chen et al. (2023) 

survey popular algorithms for predicting stock returns using regression. Bali et al. 

(2023) and Bianchi et al. (2021) apply the same approach to stock options and the 

bond market. Li and Rossi (2020) use this approach for mutual fund selections, 

while Aubry et al. (2023) employ neural networks to predict art auction prices. 

However, our study is among the first to apply multi-class classification to return 

prediction and demonstrates its impressive performance in out-of-sample 

predictions.  
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Overall, our findings provide valuable insights into the potential of machine 

learning in asset pricing and contribute to the ongoing conversation in the finance 

and accounting literature. 

Our analysis involves measuring the accuracy of predictions made by 

machines and gaining insights into their predictive abilities. We discover that the 

machines' approach closely resembles the market's underlying logic, where there 

are imbalanced transition probabilities from an old return decile to a new return 

decile at the individual stock level. We also introduce exogenous macroeconomic 

shocks, such as the 9/11 attack, and notice a significant decline in prediction 

accuracy, indicating an increased economic uncertainty. Additionally, our results 

indicate the existence of momentum in cross-sectional predictability from 

machines. By using long-short portfolios that are conditional on past prediction 

accuracy, we are able to achieve annualized Sharpe ratios as high as 13. 

Our proposal presents a novel application of prediction results that delves 

into the effects of return predictability and firm-level information environment. 

This is a significant contribution that fills a gap in the literature of information 

uncertainty. Our approach provides a fresh and empirical perspective on 

information uncertainty by breaking it down into two distinct aspects that are 

optimized through the condensation of high-dimensional information. While 

previous studies focused mainly on the return consequences of information 

asymmetry through liquidity measures (Acharya and Pedersen, 2005; Amihud and 

Mendelson, 1987), our research sheds light on the valuation consequences of 

information uncertainty, which has been a largely understudied area. 

In their studies on stock returns, Jiang et al. (2005) and Zhang (2006) find 

that information uncertainty, as measured by factors like firm age or analyst 

coverage, can have a significant impact on portfolio performance. This can lead to 
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lower future returns. However, these studies have certain limitations. Firstly, the 

proxies utilized by these researchers lack a clear relationship with returns through 

optimization, making it challenging to understand what they actually capture. 

Secondly, while using individual variables as proxies is simpler, investors and 

traders consider numerous firm characteristics simultaneously. Therefore, single-

variable proxies from the literature underrepresent the overall market information 

set. 10 

It is worth noting that some studies fail to distinguish between incomplete 

information regarding future returns and prediction accuracy. However, one should 

bear in mind that prediction accuracy and information incompleteness are two 

distinct aspects. A prediction can be precise yet challenging to make, and vice versa. 

Confusing these aspects can lead to incomplete empirical conclusions. 

Nevertheless, through defining direct measures and examining the distinct features 

of information uncertainty, we can observe that the theories advanced by Easley 

and O'Hara (2004) and Merton (1987) can complement each other. This is precisely 

what we have found. 

Based on classifiers, our prediction framework is a powerful tool for unifying 

the measures of prediction precision and information incompleteness in the stock 

market. We have successfully defined these measures empirically, capturing both 

the accuracy of predictions and the additional information required to value a firm 

accurately. We can link high-dimensional firm characteristics to future returns with 

predicted probabilities by utilizing machine learning and Shannon's information 

entropy. Our approach eliminates any confusion between these two distinct 

 
10 Martin and Nagel (2021) derive a result which also shows that the high-dimensional information can be hard 

for individuals to fully process. This finding implies that the measurement of the market aggregate of 
predictions needs to consider a comprehensive set of information. 
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aspects of information uncertainty. Our empirical findings confirm robustly two 

theories at the stock level, which were previously based on limited direct evidence. 

Third, our paper also contributes to understanding accounting quality, 

governance, and litigation. Easley and O’Hara (2004) suggest that firms can 

endogenously choose their information environment to achieve corporate goals. 

Therefore, the information uncertainty measures may capture such choices and 

reflect the firm-level qualities. Therefore, we explore the information environment 

on the corporate side.  

Extensive literature has documented the determinant and the proxies of 

accounting quality (Ahmed et al. 2012; Dechow et al. 1995, 2010, 2011; Hribar et al. 

2014; Ghoul et al. 2021). Accounting quality also has profound consequences. For 

example, Bharath et al. (2008) show that accounting quality influences a firm’s debt 

contracting. Biddle and Hilary (2004) show that firms with higher accounting quality 

invest more efficiently. Mcnichols and Stubben (2015) find that acquirers can price 

target firms with higher accounting quality in acquisition more efficiently. However, 

the literature has not directly analyzed the relation between return prediction 

uncertainty and accounting quality. We fill this gap by showing the differential 

relations between our information uncertainty measures and the accounting 

quality proxied by different variables for readability, earnings management, and 

financial stability. Our findings also emphasize the severe consequence of 

restatement related to return information uncertainty. Yet, our results also confirm 

that governance does not lead to bad accounting quality and that firms of 

information incompleteness have higher shareholder approval as proxied by 

shareholder litigation. 

We add into the literature the understanding of the relation between 

information uncertainty and the SEC actions. Recent literature documents that the 
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SEC’s resource constraints, political connections, and revolving doors can influence 

the SEC regulatory activities (Correia 2014; Heese 2019; Kedia and Rajgopal 2011). 

In particular, Holzman et al. (2023) show that the SEC would investigate firms in 

secrecy based on the likelihood of noncompliance, private sector scrutiny, and 

public trigger events. However, the literature does not show the SEC’s reaction to 

return predictability. We take a step forward and provide novel evidence that the 

information uncertainty in both its aspects captures future accounting quality and 

can predict regulatory consequences, including the SEC’s undisclosed investigation.  

2. Empirical Methods 

We provide a general description of our methods in this section. First, we 

explain the basics of our modeling process. We briefly introduce the machine 

learning classification methods and the training process. We also discuss the 

metrics we adopt in evaluating modeling performance. Next, we detail our data 

construction at the end of this section. 

2.1 Introduction to Return Prediction as A Classification Problem 

We frame the cross-sectional return prediction as a multi-class classification 

problem. Given a set of candidate outcomes, the classification selects the most 

promising outcome as a prediction. This is the foundation of our measures of 

information uncertainty. Following the convention of the asset pricing literature, 

we group individual stock returns into ten deciles per month and try to allocate 

each stock to its correct return decile.11  

We refer to a strategy that makes the classification prediction as a classifier. 

A classifier takes the input variables and calibrates the parameters through the 

 
11 The classic asset pricing studies and the recent machine learning prediction studies often focus on the decile 
portfolios. For example, Fama and French (1992) sort stocks into deciles based 𝛽 loading, while Gu et al. (2020) 
sort stocks into deciles based on predicted returns. 
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modeling architecture that maps the input variables to the probability space to 

minimize a loss function. Figure 1 illustrates the modeling process. Specifically, 

when we frame the cross-sectional return prediction as a classification problem, 

our optimization objective is to create a model such that the predicted probabilities 

distribute exactly like the observed probabilities. We follow the standard practice 

in multi-class classification problems and adopt a cross-entropy loss function to 

achieve this matching process. The cross-entropy function measures the difference 

between two probability distributions. A classifier will minimize the loss function 

below for the real return distribution cap P relative to the predicted distribution 

cap Q over a set of return deciles cap D. 

𝐿 = −𝐸! [log" 𝑞] = − + 𝑃(𝑑#$) log" 𝑄(𝑑#$)
%!"∈'

,																																										(1) 

where 𝑃(𝑑#$) is proxied empirically by the true outcome, i.e., return decile of a stock 

𝑖 at time 𝑡, with a value of 1 or 0. 

Then, the classifier selects the return decile with the highest predicted 

probability as its final prediction. In the appendix, we include the benchmark 

machine learning regression results, and we adopt the standard mean squared 

error as the loss function for these benchmark models (See Gu et al. 2020).12 

[Include Figure 1 Here] 

Our main models include the standard multilayer perceptron, i.e., Artificial 

Neuron Network or ANN, the random forest, and the gradient-boosting trees. Our 

choice of models depends on two considerations. First, we want to focus on 

powerful models only. Second, we do not attempt to search for models with 

 
12 Mean squared error loss is the loss function in ordinary least square regressions. It takes the following form: 
𝐿 = !

"
∑ (𝑦#$ − 𝑦(#$)%#$  for stocks 𝑖 and time 𝑡. 
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marginal improvement in predictive power benchmark to the existing works in the 

literature. Instead, we want our models to be replicable and intuitive. Thus, we 

focus on standard models with strong predictive power.  

2.2 Artificial Neural Network 

Figure 2 illustrates an example of the ANN architecture in this paper. The 

standard ANN processes input through backpropagation, a calibration process that 

adjusts parameters to minimize the loss function, in a fully connected architecture, 

including the input layer, the hidden layer(s), and the output layer.  

[Include Figure 2 Here] 

In our ANN classifiers, the input layers include the firm characteristics. Then, 

the firm characteristics go through the fully connected hidden layers. Each neuron 

in a hidden layer takes the input from the prior layer with a linear function wrapped 

in a nonlinear function, which is again included in another linear function (See 

Hastie et al. 2009). The nonlinear function is referred to as activation function. The 

hidden layers then feed the output to the output layer in our ANN classifiers, which 

includes ten neurons for return deciles. Each neuron in the output layer employs a 

SoftMax function that translates the output from hidden layers into probabilities.13 

In the ANN regressions, the output layer includes only a regression neuron.  

More specifically, consider our ANNs with multiple hidden layers. The first 

hidden layer includes 𝑁(  neurons, and the neuron 	𝑖(	 includes a weight vector 

𝑤)#*
( ∈ 𝑊)#

(  for the corresponding firm characteristics 𝑥* ∈ 𝑋+	 and a bias 𝑏)#
( . 

ℎ)#
( = 𝜎?+𝑤)#*

( 𝑥* + 𝑏)#
(

*

A,																																																																							(2) 

 
13 The softmax function is a popular scaling function in regressions to model categorical response variable. For 
example, multinomial regression also employs softmax function. 
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where 𝜎  is an activation function. 14  In this paper, we have two ANN models, 

including a model with rectifier activation function 𝜎(𝑎) = max(0, 𝑎) and the other 

model with tanh activation function 𝜎(𝑎) = ,-.(0)2,-.(20)
,-.(0)3,-.(20)

. Then, ℎ((, ⋯ , ℎ)#
( , ⋯ , ℎ4#

(  

become the input of the second hidden layer. In general, the neuron 𝑚5  in the 

hidden layer 𝑙 ∈ [1, 𝐿]  transforms all 𝑁52(  output from hidden layer 𝑙 − 1 , i.e., 

ℎ(52(, ⋯ , ℎ)$%#
52( , ⋯ , ℎ4$%#

52(  with a weight vector 𝑤)$)$%#
5 ∈ 𝑊)$

5  and a bias 𝑏)$  as the 

following. 

ℎ)$
5 = 𝜎K+ 𝑤)$)$%#

5 ℎ)$%#
52( + 𝑏)$

5

)$%#

L.																																																											(3) 

The output layer takes the vector input 𝐻6 from the last hidden layer and 

makes the final linear transformation 𝑓% = ∑ 𝑤%)&ℎ)&
6 + 𝑏%)&  for output neuron of 

class 𝑑 ∈ 𝐷, and the calculation finishes with the SoftMax function as below. Then, 

the predicted probabilities are compared to the realized outcomes in the cross-

entropy loss function.15 

																																																																																																																									𝑄(𝑑)

=
exp	(𝑓%)

∑ exp	(𝑓7)'
.																																																																											(4) 

2.3 Random Forest and Gradient Boosting 

We include two powerful tree models, i.e., random forest and gradient-

boosting trees. Both models are developed from the simple decision tree. A classic 

binary decision tree finds the best splitting strategies to divide a sample into pieces 

based on the values of the input variables sequentially such that a loss function is 

minimized. For each subsample from the splitting process, the tree will assign a 

 
14 We do not change the activation function from layer to layer in this paper. 
15 Our benchmark machine learning regressions have a different single neuron output layer that takes a hidden 
layer’s transformation, and the result is compared to the realized return using the mean squared error loss 
function. 
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class for the classification task and a numeric value for the regression task. In other 

words, the decision tree dissects the response space into subspaces conditional on 

the input variables and gives each subspace a value. 

A random forest model builds on the decision trees with bootstrap 

aggregating (bagging). In each bootstrapping sample, the algorithm grows a tree 

by recursively sample from the input variables for splitting and picks the best split-

point until the node size is reached. Then, the final prediction is made by 

aggregating the predictions from the trees in the random forest. Usually, an equal-

weighted vote is taken as the prediction for the classification problems, while the 

average value is taken as the prediction for the regression problems.  

Consider a decision tree 𝑇(𝑧; Θ) = ∑ 𝛾*𝐼(𝑧 ∈ 𝑅*)*∈[(,+] , where 𝑧  is an 

observation, 𝛾* is the assigned value in the region 𝑅* , 𝐽 is the number of regions. Θ 

denotes the collection of parameters 𝛾*  and 𝑅*  for all the regions, and it also 

includes  𝐽.  

In our multi-class classification task, a boosted tree will make prediction on 

the probability of each of the outcome classes 𝑑 ∈ 𝐷 and repetitively update the 

prediction until the loss function is minimized. Specifically, the algorithm initiates 

the prediction for class  𝑑 as 𝑓%; = 0. The following boosted tree grows. 

𝑓%(𝑧) = +𝑇(𝑧; Θ)
<∈=

,																																																																																										(5) 

where 𝐵 is the collection of all the bootstrapping subsamples. The output of the 

tree enters the SoftMax function to produce a set of probability predictions as 

follows. 

𝑝%(𝑧) =
exp	[𝑓%(𝑧)]

∑ exp	(𝑓7(𝑧))%∈'
.																																																																															(6) 
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The algorithm calculates pseudo residuals 𝑟%< = 𝑦% − 𝑝%(𝑧) for all regions 

𝑅*< . Then, it updates 𝛾* through loss minimization and outputs an updated boosted 

tree. 

𝑓%<(𝑧) = 𝑓%<2((𝑧) + + 𝛾*%<
*∈[(,+]

𝐼d𝑧 ∈ 𝑅*e.																																																				(7) 

The optimization process solves the parameters in a recursive manner with 

the bootstrapping samples. 

Θg< = argmin
>'

+ 𝐿(𝑦, 𝑓<2((𝑧) + 𝑇(𝑧; Θ<))
#∈[(,4]

,																																												(8) 

where 𝑦 is the response variable of the observation 𝑧, and 𝐿 is the cross-entropy 

function with the probabilities as the input or the mean square loss function with 

the numeric prediction as the input.  

2.4 Modeling Strategy: Training, Grid Search, and Aggregation 

We separate historical observations into training sets, validation sets, and 

testing sets conditional on time window. In total, we update the models four times 

every ten years, and the out-of-sample prediction period starts in January 1983. 

Figure 3 demonstrates our modeling strategy. 

[Insert Figure 3 Here] 

Each update of the models includes two stages. First, we fit the individual 

models with different combinations of architectures and hyperparameters using 

the training data set. Then, we make predictions in the following validation set, 

including the observations the models do not see during the training period. We 

then select the best architecture and hyperparameter combination for each model, 

which is applied to make out-of-sample predictions in the corresponding testing 
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set. The specific windows that we adopt in this paper are detailed in Appendix Table 

A1. 

We focus on 4 models: ANN with rectifier activation function, ANN with tanh 

activation function, random forest, and gradient boosting tree. The main 

architectural hyperparameters for ANN models are the number of hidden layers 

and neurons in each hidden layer. In contrast, the main architectural 

hyperparameter for tree models is the max number of layers that the tree models 

can grow. We conduct a wide range search of the architectural hyperparameters, 

and Table 1 reports our modeling specification.  

[Insert Table 1 Here] 

We build two ANN models. Each will search for 30 sub-models that take the 

architectural specification with a shrinkage parameter. We also build two tree 

models. Each will search for 4 sub-models with the specified numbers of depths. 

We specify the number of epochs for the ANN models to 1000 times. Comparably, 

we specify the number of trees in the tree models to be 1000. The details of the 

optimization choices can be found in Appendix Table A2. 

In Section 4, we report the individual model’s prediction performance. 

However, we report the economic analyses based on the measures formed with 

the aggregated predictions for brevity. We take the most straightforward route and 

aggregate the predictions from our four models with averaging. However, we do 

not average the prediction directly. Instead, we take the average of the ten 

predicted probabilities as the aggregated probability predictions. We make the 

return decile predictions by selecting the decile with the highest aggregated 

predicted decile probability. 
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𝑃0??ld𝑑#,$e =
1
4 + 𝑃@g
@∈{055	C	@50DD#E#FGD}

d𝑑#,$e,																																																						(9) 

where 𝑃0??ld𝑑#,$e is the aggregated predicted decile probability for stock 𝑖 at time 

𝑡 to be in decile 𝑑 ∈ 𝐷 and 4 represents the total of 4 classifiers. We then use the 

aggregated predictions and the aggregated probabilities to calculate our measures. 

We discuss the measures in Section 5. 

2.5 Data 

Our data universe contains 3,342,486 monthly stock observations of 26,302 

distinct common stocks with current returns listed on 3 major exchanges covering 

196201:202112. The lagged predictors include the return decile, 102 firm 

characteristics, 2-digit SIC industry indicator, and 2-digit SIC industry lagged 

returns.16 Specifically, we construct the firm characteristics following Green et al. 

(2017) and Gu et al. (2020) based on CRSP and COMPUSTAT. We start by making 

the data set to be ultimately CRSP centric data with no data elimination if 

possible.17 We only eliminate rows with missing current returns and not common 

stocks (SHRCD 10, 11 or 12) listed on the major 3 exchanges (EXCHCD 1, 2 or 3). 

For factor model tests and risk-free rate, we obtain Fama and French's (2015) five 

factors from French’s website. Appendix Table A3 reports the summary statistics of 

our prediction sample. 

We also construct a separate data set for our firm-year tests of corporate 

implications. Easley and O’Hara (2004) mention that firms can choose their 

information environment to achieve strategical goals, such as choosing their risk 

premium. Therefore, we test the implication and investigate whether the 

 
16 Following Green et al. (2017) and Gu et al. (2020), we lag the annual firm characteristics by at least 6 months, 
we lag the quarterly firm characteristics by at least 4 months and we lag the monthly firm characteristics by at 
least 1 month. 
17 Our data construction avoids the problem of fluctuating number of stocks from month to month. 



20 
 

information uncertainty measures in this paper predictively reflect future 

accounting quality and future governance outcomes. To do this, we start with the 

Audit Analytics database for accounting variables and litigation information, and 

we incorporate necessary variables from I/B/E/S, RiskMetrics, and Execucomp for 

analyst forecast dispersion, CEO information, and CEO salary. We get the 

Accounting and Auditing Enforcement Releases (AAER) from the University of 

Southern California (Dechow et al. 2011). In addition, we also request the SEC’s 

records of their undisclosed investigation through the Freedom of Information Act 

(FOIA). In the end, this separate data set starts from 2000 primarily because most 

of the variables from Audit Analytics start from 2000, and we would like to make 

the testing sample as consistent as possible. In the end, this firm-year sample 

contains 56,889 distinct firm-years. We detail the variable definition in the appendix 

Table.18 

3. Modeling Performance 

In this section, we demonstrate our models' statistical and economic 

performance. Successful performance is important to our objective in this paper. 

Suppose our models perform well in extracting return predictability from the 

comprehensive public information. In that case, we can then be confident of 

leveraging the prediction process to study the implications of return predictability.  

3.1 Prediction Precision 

Panel A and B in Table 2 report the precision of the predictions from our 

models individually and in aggregate. The best in-sample and out-of-sample 

model is the random forest model, delivering prediction precisions of 17.9% and 

16%, respectively. The ANN models underperform the tree models in both the 

 
18 Although the total number of firm-year observations is 56,889, some regressions may have less observations 
due to limited variable availability. 
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training and testing sets. The ANN models produce a prediction precision of 

around 15.5%. The training set precision is generally higher than the testing set 

precision. But the deterioration is small, except for random forests. Appendix Table 

A3 details the parameters selected from the in-sample training and the validation 

process for each model. Compared to the ANN model with the Rectifier activation 

function, the ANN model with the Tanh activation function tends to select small 

models. However, the RF model prefers complex structures. 

[Insert Table 2 Here] 

The naïve classifier precision is the benchmark that assigns the return decile 

with the largest discrete decile distribution prevalence to all the observations as 

the predicted decile.19 In other words, the naïve classifier’s prediction maximizes 

the prediction precision conditional only on the past return decile distribution. 

Since we balanced our in-sample data following the common practice of the 

classification, the naïve precision is 10% for the in-sample prediction. The out-of-

sample data has slightly higher naïve precision at 10.1%. The binomial tests 

indicate that the precisions delivered by the machine learning classifiers are 

statistically meaningful. 20  In other words, all the models successfully extract 

information of future returns from the input variables through the modeling 

structure. When we aggregate the predictions, the aggregated classification 

achieves even higher out-of-sample prediction precision at 16.1% (see Table 2 

Panel B).  

 
19 The comparison between the prediction precision from the classifiers and the prediction precision from the 
naïve classifier is similar to the comparison between the prediction precision from predictive regressions and 
the historical mean. 
20 The binomial test is popular in testing whether two probabilities of success is equal. Because of the success 
is measurable in classification practice, i.e., a correct prediction is a success, the binomial test is often applied 
in machine learning to test if the classifier actually learns something from the data that is meaningful. 
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In Table 2 Panel C, we report the performance of the benchmark regression 

models with the same parameter and hyperparameter specifications of their 

classifier counterparts such that a head-to-head comparison is possible. 

Specifically, these machine learning regression models predict numeric returns first, 

and then prediction is sorted to form the decile predictions. We compare the decile 

predictions from the classifiers and the regressions and conclude that the classifiers 

achieve higher precision in allocating the stocks into the correct future deciles.  

In Table 3, we report the details of the out-of-sample prediction from the 

aggregated predictions in confusion matrices. Panel A reports the number of 

observations with the predicted decile 𝑑$n in contrast with the realized decile 𝑑$. For 

example, the first row in the first column shows that the aggregated predictions 

place 122,627 out-of-sample observations in the predicted decile 1, and these 

observations also realize in decile 1 in the next period. Panel B reports the scaled 

version of Panel A by the number of observations in the true class. Panel C reports 

the scaled version of Panel A by the number of observations in the entire sample.  

[Insert Table 3 Here] 

Our results show that the models, on average devote the most resources to 

the deciles on the two tails and around the center of the return distribution. The 

models also achieve the highest precisions in these deciles. For example, for the 

real decile 1, the models spend the most resources and made 546,858 predictions, 

out of which 112,627 observations realize in decile 1.21 These 112,627 observations 

make up 5% in the total precision out of the 100 possible combinations between 

 
21 We view the number of the observations allocated into a predicted decile as the total resources the machines 
spend on the predictions. For example, the summation of first row in Table 3 Panel A is 546,858, indicating that 
the machines predict this many observations as decile 1 observations. The numbers of the observations 
predicted to be in decile 1 to decile 10 are the following: 546,858, 221,697, 57,031, 72,270, 126,301, 435,344, 
261,155, 230,693, 137,730, and 411396. Therefore, the models spend the least resources on decile 3 and decile 
4. 
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the predicted deciles and the realized deciles. 49% of these observations realized 

in decile 1 are detected correctly by the aggregated predictions from the machines. 

While the model also gains precision from deciles 6-8 and decile 10. Appendix 

Table A4 also reports the prediction precision by 2-digit SIC. Industries like Forestry, 

Metal, Mining, and Oil & Gas Extraction demonstrate the highest prediction 

precision, whereas Automotive Dealers & Service Stations, Trucking & 

Warehousing, and Hotels & Other Lodging Places exhibit the lowest prediction 

precision. 

3.2 Return Decile Transitions, Prediction Precision, and Information 

Incompleteness 

We proxy the information incompleteness on a market level for individual 

stocks using Shannon’s information entropy based on the predicted probabilities 

as the following (Shannon 1948).22  

𝐸#,$ = − + 𝑝d𝑑I,$el log" 𝑝d𝑑I,$el

%!,"∈'

,																																																																(10) 

where 𝐷  includes [1:10] and 𝑝d𝑑I,$el  stands for the predicted probability of the 

event that the stock 𝑖 at time 𝑡 will be in the decile 𝑑#,$. Note that our measure of 

information incompleteness is concurrent because it is directly from the 

predictions, while the measure of precision depends on past prediction accuracy.  

By definition, our information incompleteness measures the expected 

minimum number of binary questions that needs to be answered to make 100% 

precision predictions and the unit of the information incompleteness is then in bits. 

In other words, if a stock is associated with an entropy or information 

 
22 Such measure is conditional on the past public information. Since the models condense the information 
from a comprehensive list of predictors and deliver significant performance, we argue that this information 
incompleteness is representative for the best predictions based on public market information. 
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incompleteness of three, at least three binary questions about the decile returns 

must be answered so that the prediction can be made without uncertainty. This 

also interprets as that the prediction is at least short by three bits in the prediction 

information. 

With the measures of prediction precision and the information 

incompleteness, we continue to investigate the transition probabilities and their 

relations with the machine learning prediction precision. Table 4 presents our 

analyses. Panel A reports the unconditional cross-sectional return decile transition 

probability during our out-of-sample period. Panel B demonstrates the prediction 

precision from our combined model by the transitions, while Panel C reports the 

information incompleteness by the transitions. 

[Insert Table 4 Here] 

Compared with a random distribution of return transition, which should be 

around 1% for each decile, the unconditional transition probabilities are distributed 

unbalanced. First, the center of the transition matrix highlights the certainty of the 

return transitions from deciles 4-7 to both the center of the distribution with a 

transition probability around 1.2% and the certainty of the transitions from the tail 

deciles. Transitions from decile 1 to deciles 1 and 10 have densities of 1.7% and 

1.8%, respectively. Similarly, transitions from decile 10 to deciles 1 and 10 also have 

greater certainty. In Panel B, the prediction precisions for each transition suggest 

that the machines take advantage of the unbalanced distribution of the transition 

probabilities. The machines achieve the highest precision for the transitions from 

the center deciles to the center deciles and the transitions from the extreme deciles.  

Our results in Panel C of Table 4 emphasize the machines’ choice from the 

information perspective. The table replicates the nonlinear distribution of transition 

probabilities from Panel A and reflects the similar nonlinearity in the information 
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incompleteness. The transitions in the center and the extreme transitions clearly 

have smaller information incompleteness, while other transitions have greater 

information incompleteness. 

3.3 Uncertainty Shocks and Machine Learning Return Predictability 

To validate our measure, we apply exogenous shocks that represent the 

information uncertainty. We expect the prediction precision to drop after the 

information uncertainty. We apply the notable exogenous events that has 

profound economic impacts including 9-11, Hurricane Katrina, Hurricane Mari and 

COVID-19. Figure 4 presents the average prediction precision from the aggregated 

prediction in our out-of-sample period. The results imply the precision of machine 

learning prediction can be a particularly good measure for information uncertainty. 

[Insert Figure 4 Here] 

3.4 Variable Importance 

Figure 5 reports the average variable importance across the training periods 

for each variable. We take the average percentage of the total sum of squared error 

reduction to estimate the variable importance for the tree models across all the 

trees and the splitting nodes related to the predictors of interest. We apply the 

Gedeon method to computing the variable importance in the neural networks 

based on the summation of the squared normalized weights related to each input 

predictor in all the layers (Breiman 1984, 2001; Gedeon 1997; Hastie et al. 2009).  

Our results show that the models draw information from different predictors. 

The ANN models extract information from a wider range of predictors than the 

tree models. Notably, the gradient boosting tree heavily relies on idiosyncratic 

volatility (idiovol), contributing 45% of the sum of squared error reduction in the 

model. The ANN models rely more on past industry information (sich2) and return 

decile distribution (label10), contributing more than 20% and more than 6% to the 
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neural weights, respectively. The selection effect is also obvious. Variables such as 

annual income (acc and absacc), industry-adjusted percentage change in capital 

expenditures (pchcapx_ia), and analysts’ mean annual earnings forecast (sfe) 

contribute the least to the machines’ predictions. 

[Insert Figure 5 Here] 

3.5 Economic Performance 

Next, we turn to economic performance. Because we have several models, 

we focus on the portfolios constructed with the aggregation of the predictions (see 

Table 2 Panel B). We form both the equal-weight and the value-weight portfolios. 

We also include the long-short portfolios, where we short the lowest decile 

portfolio (the highest precision of prediction) and hold the top highest decile 

portfolio (the lowest precision) and the return is also adjusted with the risk-free 

rate. Analogously, we sell stocks that are the most predictable and long the 

opposite. 

Table 5 reports the portfolio performance based on the decile predictions. 

We report several important statistics. First, we report the average excess return 

across the time periods. The excess return is defined as the portfolio return minus 

the risk-free rate. Second, we report the cumulative return in our out-of-sample 

period, i.e., 198301:202112. Third, we report alphas from the standard factor 

models including capital asset pricing model (CAPM), Fama-French 3 factor model 

(FF3F), and Fama-French 5 factor model (FF5F) (Fama and French 1992, 2015).23 The 

alphas are obtained from fitting the following regression. 

𝑅!,$F = 𝛼!,$ + 𝑭$𝚩! + 𝜀!,$ ,																																																																															(11) 

 
23 We report Newy-West t statistics for the alphas with a lag of 6 (Newey and West 1987). 
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where 𝑭$  contains the factors at time 𝑡 and 𝚩! is the risk loadings for the portfolio 

𝑝. Lastly, we report important portfolio performance including standard deviation, 

annualized Sharpe ratio, turnover, maximum drawdown, and average number of 

stocks in each portfolio. 

[Insert Table 5 Here] 

We define monthly Sharpe ratio as a portfolio’s excess return scaled by the 

standard deviation of the portfolio return, and we annualize the Sharpe ratio by 

multiplying the monthly Sharpe ratio with √12: 

𝑆𝑅! =
𝐸(𝑅! − 𝑅E)
𝜎(𝑅!)

× √12.																																																																													(12) 

The turnover is defined as  

𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 =
1
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,																						(13) 

where 𝑤*,# represents the weight of stock 𝑗 during month 𝑖 in a portfolio (Gu et al. 

2020; Neely et al. 2014). We define the maximum drawdown according to the most 

recent peak of the cumulative return in our sample coverage. 

𝑀𝑎𝑥𝐷𝐷$:$3K = min
$:$3K

~
𝑌#3( − 𝑌#

!F0J

𝑌#
!F0J �,																																																									(14) 

where 𝑖  is a trading month during the investment window 𝑡: 𝑡 + 𝑛 . 𝑌#
!F0J  is the 

highest cumulative return until the month 𝑖. 

Table 5 Panel A reports the equal-weight portfolio performance, while Panel 

B reports the value-weight portfolio performance. In general, the aggregate of the 

algorithms is good at dissecting future returns. The portfolio returns present a 

linear pattern with the lowest decile delivering the lowest return and the highest 
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decile delivering the highest return. Our portfolios deliver average excess return as 

high as 2.3% (1.3%) monthly for the equal-weight (value-weight) scheme. The 

alphas from CAPM and factor models indicate that the portfolios including stocks 

of returns that are away from the market median return are not explained by the 

standard risk factors. The long-short portfolios deliver Sharpe ratios significantly 

higher than the Sharpe ratios from holding the market return. The maximum 

drawdowns are significantly lowered in the long-short portfolios. In Appendix Table 

A4, we include the performance statistics for the portfolios based on the 

predictions including only the stocks from the top 50% market capitalization. Our 

findings indicate that the performance of the strategy is robust.  

Our analysis reveals that stocks with lower predictability exhibit superior 

performance compared to more predictable ones. This outperformance is quite 

substantial, with equal-weighted and value-weighted portfolios having Sharpe 

ratios of 2.73 and 1.01 respectively. It's worth noting that investors do not need to 

be correct on all return predictions to outperform the market. In fact, correctly 

predicting stock returns for just over 16% of the time can lead to significant 

market-beating returns (refer to Panel B Table 2). 

4. Returns and Information Uncertainty 

Section 3 discusses the modeling performance, which establishes the 

validity of using the predictions as our proxies for measuring information 

uncertainty. Specifically, we focus on the information uncertainty as reflected 

through the predictability and the intermediate modeling uncertainty, i.e., 

information incompleteness. In this section, we discuss our measures of 

information uncertainty and their interpretation related to the stock returns.  
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4.1 Prediction Success, Information Incompleteness, and Characteristics 

First, we study the return predictability from the machines with respect to 

the predictors, assuming linear relations. Specifically, we focus on two measures, 

i.e., the prediction success and information incompleteness. The prediction success 

is defined as a dummy variable with value of 1 indicating the predicted decile is 

the same as the realized decile, while the information incompleteness is defined in 

Section 3.  

We perform two Fama-MacBeth regressions and regress the prediction 

success and the information incompleteness on the firm characteristics included in 

the machine learning models such that the coefficients of the Fama-MacBeth 

regressions indicates the marginal contribution of additional unit of value increase 

from the firm characteristics to the probability of the prediction success and the 

information incompleteness. 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠#,$	𝑜𝑟	𝐼𝑛𝑓𝑜. 𝐼𝑛𝑐𝑜𝑚𝑝.#,$ = 𝛾; + 	𝑪𝒉𝒂𝒓.𝒊,𝒕2𝟏 𝚪 + 𝜀#,$ .																			(15) 

[Insert Table 6 Here] 

Table 6 presents the results of our analyses, and we report the significant 

predictors only. Panel A shows a list of variables that are related to the prediction 

precision. For example, a one standard deviation increase in the change of the 6-

month momentum (chmom) is related to a 0.4% increase in the prediction precision, 

while return on assets (roa) is related to a 0.05% decrease in the return predictions. 

In total, 24 (30) firm characteristics are positively (negatively) related to machine 

learning prediction precision. 

Panel B reports the results of the analysis on information incompleteness. 

49 firm characteristics are positively related to information incompleteness, 

including variables such as analysts earnings forecast dispersion (disp), return on 
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equity (roeq), earnings-to-price ratio (ep), and beta. In comparison, 35 predictors 

are negatively related to the information incompleteness, including firm age (age), 

change in 6-month momentum (chmom), dividend yield (dy), and bid-ask spread 

(baspread). Specifically, for example, a standard deviation increase in analysts 

earnings forecast dispersion (disp) is associated with the increase in the information 

incompleteness of 0.003 bit, while one-year increase in firm age is related to a 

reduction of 0.012 bit in the information incompleteness.  

4.2 Stock Return and Information Uncertainty 

Next, we measure the information uncertainty in two ways and study the 

relation between stock returns and information uncertainty. Easley and O’Hara 

(2004) predict that the returns are negatively related to the return prediction 

precision. Because our machine learning classifiers present powerful performance 

in deciding the future return deciles, we use the prediction precision as the proxy 

of the market’s aggregate prediction precision for each stocks and apply this 

precision to investigate the theoretical prediction. Specifically, we measure the 

market aggregate prediction precision of stock 𝑖 at time 𝑡 based on the prediction 

from the past 12 months. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛#,$ = +
𝐼(𝑑Q = 𝑑Qn)

12
Q∈$2(":$2(

,																																																									(16) 

where 𝐼 is an indicator of value 1 or 0, 𝑑Qn is the predicted return decile, and 𝑑Q is 

the realized decile. Our calculation uses only our out-of-sample predictions. In 

addition, we adopt the information incompleteness calculated as the information 

entropy defined in Section 4 as a measure of information uncertainty that captures 

the additional requirement of information to make fully correct predictions. 

We focus on providing individual stock-level evidence of the relationship 

between returns and the two aspects of information uncertainty. We hypothesize 
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that both prediction precision and information incompleteness can be associated 

with future returns. Specifically, following Green et al. (2017), we run the following 

Fama-MacBeth predictive regression controlling 102 firm characteristics, 2-digit 

SIC fixed effects, and past return deciles.  

 

𝑅#,$ = 𝛾; + 𝛾(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛#,$ + 𝛾"𝐼𝑛𝑓𝑜. 𝐼𝑛𝑐𝑜𝑚𝑝.#,$																																														 

+	𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒔𝒊,𝒕2𝟏𝚪 + 𝜀#,$ ,																																																															(17) 

where all regressors are based on lagged information.  

We report the regression results in Table 7 Panel A covering the monthly stock data 

from 198301:202112 on more than 2.5 million observations. Note that the 102 firm 

characteristics include almost all common proxies of uncertainty directly related to 

or irrelated to stock return predictions. For example, firm age, monthly average of 

bid-ask spread (baspread), standard deviation of analyst earnings forecasts (disp), 

dollar value volatility (dolvol), number of analyst coverage (nanalyst), return 

volatility (retvol), earnings supprise (sue), among others are all included in the 

regressions (Green et al. 2007; Gu et al 2020; Jiang et al. 2005; Zhang 2006). Chib 

et al (2022) argue that the more characteristics we include in the Fama-MacBeth 

regression, the coefficient of the characterstics becomes pure-play and pristine. 

Our measures are still significant at the 0.01 level, indicating that the relation 

between return and our measures is strong and robust.24 

[Insert Table 7 Here] 

Easley and O’Hara (2004) predict that the precision is negatively related to 

the stock return. Meanwhile, Merton (1987) points out that “the effect of 

 
24 We follow Green et al. (2017) and report the predictive Fama-French regression estimates and statistics. In 
untabulated results, we show that our results are also robust under the ordinary least square (OLS) estimates 
with regular clustered errors at the firm level. 
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incomplete information on equilibrium price is similar to applying an additional 

discount rate”, which suggests that the limitation on information content 

incorporated in stock price due to information asymmetry and lack of participants 

with private information can lead to lower stock returns (Merton 1987, p. 493). Our 

results are consistent with these theoretical predictions. Standalone, the prediction 

precision has a marginal effect of 0.022, which means that a 1% increase in the 

prediction precision on the market level decreases the future return of individual 

stock by 0.02%. The standalone regression of information incompleteness indicates 

that 1 bit increase in the additional information necessary to make perfect 

predictions will lead to 4% decrease in the future return.  

More importantly, the last column in Table 7 emphasizes that the prediction 

precision and the incompleteness are distinct aspects of information uncertainty 

about returns, and they do not subsume each other’s effect. Conceptually, lower 

precision and higher information incompleteness can be interpreted as 

informationally uncertain, leading to contradictions between the empirical findings 

and the theory.  

Specifically, using proxies, Jiang et al. (2005) and Zhang (2006) find that the 

information uncertainty leads to lower return, which is contradictory to the theory 

predictions from Easley and O’Hara (2004), who have an explicit expression 

indicating that the returns are a function of prediction precision and that lower 

precision thus higher information uncertainty should be related to higher return. 

Through dissecting the two distinct aspects of information uncertainty, our results 

show that both precision and information incompleteness leads to lower individual 

stock returns and thus reconsolidate the empirical findings and the theories. 

Additionally, leveraging our novel measures of prediction success, a dummy 

variable indicating correct prediction, and the information incompleteness, we 
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explore the relation between prediction precision and information incompleteness. 

Panel B in Table 7 reports the results across the models and the aggregated 

prediction. The results emphasize the negative relation between the probability of 

successful prediction and the information incompleteness. 

4.3 Portfolios Conditional on Information Uncertainty 

Taking advantage of the information uncertainty measures, we sort the 

stocks according to the predicted deciles and the two information uncertainty 

measures, i.e., the past 12-month prediction precision and the information 

incompleteness. We first construct a set of prediction-based portfolios using only 

the stocks from the top precision decile. Then, we construct a second set of 

portfolios using only the stocks from the lowest information incompleteness. Table 

8 reports the portfolio performance organized in the same way as Table 5. 

[Insert Table 8 Here] 

Regardless of the weighting scheme, Panel A and B in Table 8 show the 

conditioning information of prior precision enhances the portfolio performance 

tremendously. The equal-weight (value-weight) long-short portfolio can deliver 

excess return of 62.3% (53.3%) monthly with 87 stocks in the long leg and 116 

stocks in the short leg on average. The annualized Sharpe ratios are as high as 13.5. 

One important measure worth noting is that the maximum drawdown which 

becomes 0 for the highest return decile, meaning that all stocks are perfectly 

predicted. The factor models cannot explain the anomaly returns from the long-

short portfolios. To sum up, Table 8 confirms that the precision measure captures 

the prediction precision. Moreover, the prediction precision observes strong 

continuation. Stocks that realize high prediction precision in the past will be more 

accurate to predict in the future.  
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In Panel C and D, we investigate the information incompleteness and 

portfolio returns. The findings are like those of the portfolios conditional on 

precision, despite weaker effect. Table 8 together validates our measures through 

the conditional portfolios and demonstrates strong enhancing power in portfolio 

performance. It also emphasizes the momentum in prediction precision and the 

information incompleteness at the individual stock level. 

5. Corporate Environment 

Easley and O’Hara (2004) point out that the firms can adjust their 

information environment endogenously to achieve strategic goals, such as moving 

the investors’ required rate of return. Information uncertainty can also lead to 

different strategical outcomes. Therefore, the information measures should reflect 

important firm choices. Starting from this section, we put our measures into 

practice and investigate the consequences of the information uncertainty from the 

corporate perspective. 

5.1 Accounting and Financial Quality 

First, we turn to accounting quality. Accounting quality is an important 

outcome of firms’ governance and directly reflects the firms’ choices of their 

information environment. We expect that our information uncertainty measures 

should predictively capture the firm’s future accounting quality. This is also an 

important robustness test of our information uncertainty measures, i.e., prediction 

precision and information incompleteness.  

Specifically, we adopt Bog index, M Score, and Altman’s Z score to measure 

the three aspects of accounting quality (Altman 1968; Bonsall et al. 2017; Beneish 

1999). Meanwhile, we also test if our return information uncertainty predicts 

restatement risk of the fiscal year. To carry out this set of tests, we aggregate our 
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measure to fiscal years at the stock level. We calculate the fiscal year prediction 

precision and the fiscal year monthly prediction information incompleteness.  

Then, we regress the response variables of accounting quality individually 

on a set of common control variables for accounting quality, including annualized 

stock volatility, market adjusted return, firm size, leverage, cash holding, Tobin’s Q, 

discretionary accrual, firm age, analyst coverage, and Fortune 500 indicator. The 

details of the control variables are in the appendix Table TA5. 

𝐴𝑐𝑐𝑡#,$ = 𝛽; + 𝛽(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛#,$2( + 𝛽"𝐼𝑛𝑓𝑜. 𝐼𝑛𝑐𝑜𝑚𝑝.#,$2(																															 

+𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒔𝚪 + 𝜀#,$ ,																																																																		(18) 

where 𝐴𝑐𝑐𝑡#,$ stands for one of our accounting quality variables in fiscal year 𝑡 for 

stock 𝑖 and our regressors are lagged by one fiscal year.25  

We report the results in Table 9. We find that the information 

incompleteness significantly indicates lower statement readability, higher 

likelihood of earnings management, and lower financial quality. More importantly, 

one bit of average information incompleteness in the past period for return 

prediction is associated with 5% probability increase for restatement. On the other 

hand, a 1% increase in the past-period prediction precision is associated with a 

0.05% increase in the Altman’s Z score, which means that the prediction precision 

predictively indicates financial soundness. 

[Insert Table 9 Here] 

 
25 Inoue and Killian (2007) show that the in-sample predictability tests are statistically more powerful than out-
of-sample tests.  This can be especially true in a situation with limited time length, which can be challenging 
for separating the data into an in-sample subset and an out-of-sample subset. Therefore, we rely on the in-
sample regressions to show the predictive power of our information uncertainty measures on future 
accounting quality and corporate governance.  
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5.2 Governance and Governance Outcome 

Table 9 shows that the firms with severe information incompleteness can 

have lower accounting quality. Therefore, an immediate question is whether firms 

of information incompleteness are firms of bad governance. This question is 

important as firms with extremely bad governance can face strong limitations in 

real-time trading, such as severe liquidity issues, because investors can have 

concerns due to the governance quality.  

We concentrate on two aspects of governance, i.e., governance structure 

and governance outcomes. First, we analyze the relation between information 

uncertainty of return prediction and the governance environment. Specifically, we 

examine the institutional ownership, the CEO-chairman duality, the CEO salary 

amount, and the firm size. 

[Insert Table 10 Here] 

We fit the regression with equation 18 and replace the response variable 

with the governance environment variables. Table 10 Panel A reports our analysis 

result on the governance environment. Our results show that precision does 

predict the governance environment, i.e., they do not have significant statistical 

relation. However, our information incompleteness is associated with higher 

institutional ownership, lower likelihood of CEO-chairman duality, lower CEO salary, 

and larger firm size. In other words, the firms of information incompleteness are 

firms with more mature governance environment and lower CEO power.  

Next, we investigate the governance outcomes. We explore three response 

variables, including R&D expenditure, the enforcement from Environment 

Protection Agency (EPA), and the cyber-attack risk. We adopt R&D expenditure as 

a proxy of risk-taking, we adopt EPA enforcement to proxy for firm-level law 

compliance, and we adopt cyber-attack risk to proxy of firm operating risks. Table 
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8 Panel B shows the regression results. We find that the prediction precision is 

positively related to future risk-taking. A 1% increase in the prediction precision is 

associated with a 90-dollar increase in R&D expenditure. On the opposite side, the 

information incompleteness is negatively associated with the governance 

outcomes. One bit increase in the information incompleteness is associated with 

113,000 dollars reduction in R&D expenditure, 2.4% reduction in EPA enforcement 

risk, and 2% reduction in cyber-attack risk.  

5.3 Stakeholder Approval 

We further examine the stakeholder satisfaction attributable to information 

uncertainty on return predictions. Specifically, we adopt litigations as our proxies 

and include eight response variables representing the occurrence of eight distinct 

types of litigations: 1. all litigation, 2. civil rights litigation, 3. environment litigation, 

4. illegal activity litigation 5. intellectual property litigation, 6. labor litigation, 7. 

regulatory litigation, and 8. shareholder litigation. We fit the regression in equation 

16 with these litigation variables as the dependent variables. Table 11 reports the 

results. 

[Insert Table 11 Here] 

In general, Table 11 shows that the precision in return prediction leads to 

increased litigation risks, especially in shareholder litigations. A 1% increase in the 

average annual precision of return prediction is associated with a 0.04% (0.03%) 

increase in shareholder (all types of) litigation risk. On the other hand, information 

incompleteness is negatively related to the litigation risk. One bit increase in the 

additional information needed to resolve prediction uncertainty is associated with 

12% (3%/4%/6%/4%/7%) reduction in the overall (civil rights/illegal 

activity/intellectual property/labor/shareholder) litigation risk. 
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5.4 The SEC Enforcement 

Next, built on our findings in accounting qualities and governance qualities, 

we question what actual regulatory consequences that information uncertainty will 

lead to. Specifically, we focus on the SEC regulatory actions, including comment 

letter issuance related to 10K filings, the SEC’s investigation in secrecy, and the 

SEC’s most famous enforcement actions, i.e., Accounting Auditing Enforcement 

(AAER enforcement). In particular, we obtain the comment letter data from Audit 

Analytics. The AAER enforcement data is from University of Southern California 

(Dechow et al. 2011). We put Freedom of Information Act (FOIA) requests to obtain 

the SEC’s undisclosed investigation records. We repeat the regression in Equation 

16 with the SEC actions as response variables. Table 12 reports the regression 

results. 

[Insert Table 12 Here] 

The SEC’s missions include both investor protection and maintaining an 

efficient market. Therefore, the commission is motivated to increase scrutiny for 

the less predictable and more uncertain firms. However, predictability can also 

signal inefficiency of the market. Therefore, it is also plausible to assume that the 

SEC will increase scrutiny intensity. Our results support the first hypothesis. 

The overall return information uncertainty does not lead to AAER 

enforcement in the next fiscal year. However, our findings indicate that the 

information incompleteness will increase both the comment letter risk and the SEC 

investigation risk. One-bit extra information needed on average to resolve return 

prediction uncertainty in the past year will increase the comment letter risk by 10% 

and the SEC investigation risk by 7%.  

Firms with predictable returns are less likely to receive comment letters from 

the routine review of filings by the SEC’s Division of Corporation Finance, which is 
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supposed to be focusing on the statement quality. In other words, the return 

predictability and the accounting quality can be two sides of the same coin, and 

both variables can have a strong impact on the SEC actions. 

Taking together our findings from Table 9 to Table 12, our results show that 

the firms of higher information uncertainty are not necessarily firms with bad 

governance. Moreover, the information uncertainty of return prediction has 

substantial disciplining effect on firm governance such that the firms with higher 

return prediction uncertainty tend to be more conservative and thus face less bad 

governance outcomes.  

As such, the SEC’s interest in the firms of information uncertainty is not likely 

driven by firm governance. In fact, firms with higher return predictability face more 

stakeholder litigations, while firms with greater information incompleteness are 

associated with lower litigation risks. These litigation risk changes highlight the 

stakeholder satisfaction of firms with higher information incompleteness for return 

predictions. 

6. Conclusion 

In this paper, we attempt to provide an alternative perspective of modeling 

returns with machine learning and offer the literature intuition on 1. the source of 

the machine learning return predictability, 2. the consequences of uncertainty in 

machine learning predictability, and 3. the information environment of the 

predictable firms. 

Specifically, we first dissect the stock returns into deciles and construct 

classification models to predict probabilities of future return deciles. Our models 

deliver statistically meaningful performance and successfully predict 16% of the 

return deciles, which translates to significant economic performance. Indeed, our 
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classification-based long-short portfolios can achieve Fama-French 5-factor 

adjusted alpha of 1.1 and 2.1% monthly for the value-weight and equal weight 

portfolios, respectively. When conditional on the top decile of historical precision, 

our long-short portfolios can deliver as high as 65% monthly returns or annualized 

Sharpe ratios as high as 13. Therefore, we argue that our models capture the 

market prediction in aggregate for individual stocks. Based on the models, we 

measure the prediction precision and information incompleteness directly. 

We document that the market transition probabilities are distributed in an 

unbalanced way. The transitions from the tails and the center of the distribution 

are more certain with probabilities deviating from the random distributed 

probability of 1%. We show that the machines take advantage of such 

unbalancedness and achieve exceptional detection rate in the transition from 

lowest decile to lowest decile. Our measure of information incompleteness 

calculated as Shannon’s information entropy based on predicted decile 

probabilities reflects that the machines replicate the nonlinearity of the transition 

probability matrix. In addition, we show that the machine return predictability 

slumps upon the exogenous macroeconomic shocks, highlighting the importance 

of economic uncertainty in prediction precision. 

Our results show that a wide range of firm characteristics contribute to the 

prediction precision and the information incompleteness. For example, a one 

standard deviation increase in the change of the 6-month momentum (chmom) is 

related to a 0.4% increase in the prediction precision, while return on assets (roa) 

is related to a 0.05% decrease in the return predictions. 49 firm characteristics are 

positively related to information incompleteness, including variables such as 

analysts earnings forecast dispersion (disp), return on equity (roeq), earnings-to-

price ratio (ep), and beta. In comparison, 35 predictors are negatively related to the 
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information incompleteness, including firm age (age), change in 6-month 

momentum (chmom), dividend yield (dy), and bid-ask spread (baspread).  

While proxies for information uncertainty in the literature such as firm age 

or analysts earnings forecast dispersion are popular in the studies of information 

uncertainty in inferring firm values, these proxies fall short in accounting for the 

comprehensive set of available information related to return predictions and do 

not establish direct relation to return predictions through explicit modeling process 

(Jiang et al. 2005; Zhang 2006). More importantly, the proxies do not separate the 

two distinct aspects of information uncertainty on return predictions, i.e., the 

precision and the information incompleteness (Easley and O’Hara 2004; Merton 

1987). This paper measures the information uncertainty of return predictions 

through the realized prediction precision and the predicted probabilities together 

under a unified modeling process, i.e., classification models. 

We are especially interested in the consequence of the return 

(un)predictability and the corporate characters reflected through the information 

uncertainty of return prediction. First, we examine the direct pricing consequences. 

The literature suggests controversial conclusions. Specifically, Easley and O’Hara 

(2004) show that information uncertainty measured by precision in a rational 

expectation model is negatively related to firm value, while the empirical evidence 

from Jiang et al. (2004) and Zhang (2006) shows the opposite conclusion with proxy 

variables. We reconsolidate the two sides of the literature and show that higher 

information uncertainty measured as lower return prediction precision does lead 

to higher stock returns while greater information incompleteness leads to lower 

stock returns. 

Firms can endogenously choose their information environment. Therefore, 

return predictability as captured by the machines may reflect the information 
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environment difference and choices. Therefore, we question what these 

(un)predictable firms are. We first turn to accounting quality, since the accounting 

quality directly influences the return predictions. Our results show that the higher 

information incompleteness is related to lower accounting quality in general, while 

the return prediction precision is related to higher financial stability. More 

importantly, firms with higher information incompleteness are more likely to 

restate their filings.  

Given these differences captured through our measures, we question 

whether the predictable firms are bad firms. Our findings confirm that the firms of 

information uncertainty may not be firms of bad governance. Instead, firms with 

greater information incompleteness are firms with higher percentage of 

institutional ownership, lower CEO power, and larger firm size. Our results also 

emphasize the disciplining effect of information uncertainty on return prediction, 

i.e., firms with higher information incompleteness are more conservative in risk-

taking and are more careful in compliance. Consequently, they are also associated 

with lower stakeholder litigation risk, meaning that they receive higher stakeholder 

approval. Quite the opposite, our results indicate that the shareholders initiate 

more lawsuits against firms that are more predictable. 

Given the heterogeneity we observe in the corporate environment related 

to return predictability, especially the accounting quality differences, we 

investigate into the regulator’s reaction. The SEC is on a three-part mission, among 

which two are related to the return predictability, i.e., investor protection and 

facilitating efficient markets. For example, if a stock is very unpredictable, many 

investors can lose their investment, then the SEC can also step in. On the other 

hand, if predictability is regarded as signals of inefficient markets, the SEC may pay 

more attention to the firms in the market segments of predictable stocks.  
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So does SEC care about whether a stock is predictable? We find the answer 

is yes. Our results support the investor protection hypothesis that the information 

uncertainty for return predictions can alternate SEC enforcement risk. We show that 

the firms with higher historical prediction precision receive comment letters less 

frequently, while the information incompleteness significantly increases the 

comment letter frequency and the SEC private investigation risk. 
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Table 1 Architectural Search 

The table below details the main parameter choices for our models in this paper. Panel A reports the 
architectural search for the hyperparameters. The hyperparameters are parameters decided through the tuning 
process happening in the validation data sets instead of the optimization process. For our ANN models, the 
main architectural choice is about the number of hidden layers and the number of neurons in each hidden 
layer. For our tree models, the maximum number of depths that the trees can grow is the main architectural 
parameter. The choice column reports this information. For the ANN models, each pair of parathesis encloses 
an individual model. Starting from the first hidden layer following the open parathesis until the last hidden 
layer before the closing parathesis, each number in the parathesis represents the number of neurons in a 
hidden layer. If a pair of parathesis encloses 𝑛 numbers, it presents an ANN model with 𝑛 hidden layers. For 
the tree models, each number in the search choice represents a separate search of a tree model that specifies 
the number as the maximum depth of the tree. 

Model Hyperparameter Search Choice 

ANN  
(ANN Rectifier/Tanh) 

1 Layers (8), (16), (32), (64), (128) 
2 Layers (128,64), (64,32), (32,16), (16,8) 
3 Layers (128,64,32), (64,32,16), (32,16,8) 
4 Layers (128,64,32,16), (64,32,16,8) 
5 Layers (128,64,32,16,8) 
Shrinkage L1=0.01 or 0 

Tree 
(RF/GBT) Depth 2,4,6,8 
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Table 2 Prediction Precision 

This table reports the overall in-sample performance and the overall out-of-sample performance. We pull 
together the training set predictions, including the predictions in the validation set, to generate the statistics 
for the in-sample predictions below, and we do the same for the out-of-sample predictions. Panel A reports 
the model performance from the classifiers, and Panel B reports the out-of-sample precision of the aggregated 
predictions. Panel C reports the machine learning regressions with the exact same parameters and 
hyperparameters for a head-to-head comparison with their counterpart classifiers. The decile predictions from 
the regression models are based on the decile sort of predicted returns (Gu et al. 2020). The two panels are 
organized in the same way. Column 1 indicates whether the performance is evaluated in the sample (IS) or out 
of the sample (OOS). Column 2 reports the precision of the prediction. Columns 3 and 4 report the 5% and 
95% bounds of the precision. Column 5 and 6 reports the binomial test results against the naïve classifier’s 
precision. RF indicates random forest, and GBT indicates gradient boosting tree. Aggregation indicates the 
aggregated predictions based on all the classifiers. 

Panel A: Classification Prediction Precision 
  (1) (2) (3) (4) (5) (6) 

  Data Set Precision 5% Bound 95% Bound 
Naïve  
Classifier  
Precision 

Binomial  
Test  
P Value 

ANN  
Rectifier 

IS 0.157 0.156 0.157 0.100 0.000 
OOS 0.155 0.155 0.155 0.101 0.000 

ANN  
Tanh 

IS 0.154 0.154 0.154 0.100 0.000 
OOS 0.154 0.154 0.155 0.101 0.000 

RF IS 0.179 0.179 0.179 0.100 0.000 
OOS 0.160 0.159 0.160 0.101 0.000 

GBT IS 0.172 0.172 0.172 0.100 0.000 
OOS 0.159 0.159 0.159 0.101 0.000        

       
Panel B: Out-of-Sample Aggregated Prediction Precision 

Aggregated OOS 0.161 0.161 0.162 0.101 0.000 
        

Panel C: Out-of-Sample Regression Prediction Precision 
  (1) (2) (3) (4) (5) (6) 

Model Data Precision 5% Bound 95% Bound 
Naïve  
Classifier  
Precision 

Binomial  
Test  
P Value 

ANN  
Rectifier OOS 0.126 0.126 0.127 0.101 0.000 

ANN  
Tanh OOS 0.129 0.128 0.129 0.101 0.000 

RF OOS 0.124 0.123 0.124 0.101 0.000 
GBT OOS 0.120 0.120 0.121 0.101 0.000 
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Table 3 Out-of-Sample Prediction Confusion Matrices 

This table reports the out-of-sample prediction confusion matrix. Panel reports the machines’ allocation of 
number of observations based on the aggregated predictions from all classifiers. The first column indicates 
the predicted decile, while the first row indicates the realized decile. For example, in the table cell of predicted 
decile 1 and realized decile 1, the aggregated predictions include 122,627 observations. The row summation 
of these numbers reflects the resources spent on the deciles by the machines. Panel B reports the scaled 
version of Panel A by the number of observations in the true class, while Panel C reports the scaled version of 
Panel A by the number of observations in the entire out-of-sample testing period. The colored blocks indicate 
the correct predictions. For example, in Panel B, the number 12% on the diagonal means there are 12% of real 
decile 2 observations are detected. In Panel C, the 5% means that out of the entire sample, 5% of the 
observations from real decile 1 are detected. The summation of the diagonal percentages in Panel C sum up 
to the total precision of the aggregated predictions ensembled from the individual classifiers. 

 Panel A: Out-of-sample Prediction Confusion Matrix 
 𝑑$ 
𝑑$. 1 2 3 4 5 6 7 8 9 10 
1 122627 73891 49420 35848 32758 29953 31127 36050 47802 87382 
2 22132 28897 25348 21123 19137 18465 18843 21039 24204 22509 
3 4115 6348 6601 6050 5797 5747 5807 5966 6011 4589 
4 3526 7059 8525 8481 8137 8271 8137 8117 7472 4545 
5 4010 9549 13739 15869 17885 17476 16173 14466 11189 5945 
6 7641 25723 44113 56564 63520 66562 63255 54990 38509 14467 
7 6507 17053 25970 31158 34405 36774 36581 33948 26666 12093 
8 9745 19485 23467 24557 25248 26727 28121 29081 27974 16348 
9 10044 14235 14036 13144 12413 12818 13569 15572 17757 14142 
10 59041 47375 37785 30769 31508 29023 30236 34215 42804 68640 
            

 Panel B: Out-of-sample Prediction Confusion Matrix  
(Scaled by Total Number of Observations in the True Class) 

 𝑑$ 
𝑑$. 1 2 3 4 5 6 7 8 9 10 
1 49% 30% 20% 15% 13% 12% 12% 14% 19% 35% 
2 9% 12% 10% 9% 8% 7% 7% 8% 10% 9% 
3 2% 3% 3% 2% 2% 2% 2% 2% 2% 2% 
4 1% 3% 3% 3% 3% 3% 3% 3% 3% 2% 
5 2% 4% 6% 7% 7% 7% 6% 6% 4% 2% 
6 3% 10% 18% 23% 25% 26% 25% 22% 15% 6% 
7 3% 7% 10% 13% 14% 15% 15% 13% 11% 5% 
8 4% 8% 9% 10% 10% 11% 11% 11% 11% 7% 
9 4% 6% 6% 5% 5% 5% 5% 6% 7% 6% 
10 24% 19% 15% 13% 13% 12% 12% 14% 17% 27% 
            

 Panel C: Out-of-sample Prediction Confusion Matrix  
(Scaled by Total Number of Observations in the Entire Sample) 

 𝑑$ 
𝑑$. 1 2 3 4 5 6 7 8 9 10 
1 5% 3% 2% 1% 1% 1% 1% 1% 2% 3% 
2 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
5 0% 0% 1% 1% 1% 1% 1% 1% 0% 0% 
6 0% 1% 2% 2% 3% 3% 3% 2% 2% 1% 
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7 0% 1% 1% 1% 1% 1% 1% 1% 1% 0% 
8 0% 1% 1% 1% 1% 1% 1% 1% 1% 1% 
9 0% 1% 1% 1% 0% 1% 1% 1% 1% 1% 
10 2% 2% 2% 1% 1% 1% 1% 1% 2% 3% 

 

  



51 
 

Table 4 Out-of-Sample Prediction Precision by Return Decile Transition  

This table reports our analysis of machine learning return predictability during our out-of-sample period by 
transitions. Panel A reports the unconditional transition probabilities. Probabilities deviating from the random 
distribution probability 1%, regardless of the direction, indicate that the transition has higher certainty. Panel 
B reports the prediction precision from the aggregated model by return decile transitions. For example, our 
prediction managed to achieve a precision of 37.4% for the return transition from decile 1 to decile 1. Panel C 
reports the information incompleteness created based on the predicted probabilities by return decile 
transitions. 

Panel A: Transition Matrix 
      𝑑$     
𝑑$&! 1 2 3 4 5 6 7 8 9 10 

1 1.7% 1.1% 0.8% 0.7% 0.7% 0.7% 0.7% 0.8% 1.0% 1.8% 
2 1.1% 1.1% 1.0% 0.9% 0.9% 0.9% 0.9% 1.0% 1.1% 1.2% 
3 0.9% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 0.9% 
4 0.7% 0.9% 1.0% 1.1% 1.1% 1.1% 1.1% 1.1% 1.0% 0.8% 
5 0.7% 0.9% 1.0% 1.1% 1.1% 1.2% 1.2% 1.1% 1.0% 0.8% 
6 0.7% 0.9% 1.0% 1.1% 1.2% 1.2% 1.2% 1.1% 1.0% 0.8% 
7 0.7% 0.9% 1.0% 1.1% 1.1% 1.2% 1.2% 1.1% 1.0% 0.8% 
8 0.8% 1.0% 1.1% 1.1% 1.1% 1.1% 1.1% 1.1% 1.0% 0.8% 
9 1.0% 1.1% 1.1% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 0.9% 
10 1.7% 1.2% 1.0% 0.8% 0.8% 0.7% 0.7% 0.8% 0.9% 1.3% 

            

Panel B: Precision 
      𝑑$     
𝑑$&! 1 2 3 4 5 6 7 8 9 10 

1 37.4% 1.3% 0.1% 0.1% 0.8% 1.9% 4.2% 7.0% 7.8% 65.2% 
2 44.4% 5.3% 0.8% 0.8% 4.0% 9.6% 12.8% 16.8% 13.2% 37.6% 
3 41.0% 9.3% 1.8% 1.9% 6.2% 20.8% 18.3% 17.1% 10.4% 26.1% 
4 39.2% 10.3% 2.2% 2.4% 8.2% 31.0% 18.6% 15.7% 8.6% 20.1% 
5 41.0% 10.4% 2.4% 3.1% 8.1% 35.6% 18.3% 12.4% 6.6% 19.1% 
6 42.4% 11.4% 2.6% 3.4% 8.3% 35.1% 18.4% 12.0% 5.7% 18.0% 
7 40.7% 13.8% 4.2% 4.3% 8.6% 36.7% 18.2% 11.4% 5.1% 15.4% 
8 44.5% 15.8% 4.4% 5.0% 9.1% 35.9% 12.9% 9.6% 5.0% 13.6% 
9 53.3% 22.2% 4.5% 7.6% 9.4% 25.0% 10.0% 7.0% 4.6% 12.6% 
10 82.5% 15.6% 2.7% 4.7% 4.4% 8.6% 4.6% 3.0% 2.9% 7.5% 
            

Panel C: Information Incompleteness 
      𝑑$     

𝑑$&! 1 2 3 4 5 6 7 8 9 10 
1 3.16 3.20 3.22 3.22 3.22 3.23 3.23 3.23 3.22 3.17 
2 3.23 3.25 3.26 3.26 3.25 3.25 3.26 3.26 3.26 3.25 
3 3.24 3.26 3.25 3.25 3.24 3.24 3.24 3.25 3.26 3.26 
4 3.24 3.26 3.25 3.24 3.23 3.23 3.23 3.24 3.25 3.26 
5 3.24 3.25 3.24 3.23 3.23 3.23 3.23 3.23 3.25 3.25 
6 3.24 3.25 3.24 3.23 3.23 3.23 3.23 3.23 3.25 3.25 
7 3.24 3.25 3.24 3.23 3.23 3.23 3.23 3.24 3.25 3.25 
8 3.23 3.25 3.25 3.24 3.24 3.24 3.24 3.24 3.25 3.25 
9 3.22 3.25 3.25 3.25 3.25 3.25 3.25 3.26 3.26 3.24 
10 3.11 3.19 3.22 3.23 3.23 3.23 3.23 3.22 3.21 3.16 
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Table 5 Portfolio Performance 

This table reports the economic performance of the portfolios constructed based on the aggregated 
predictions from the individual classifiers. The statistics are calculated based on the out-of-sample period 
covering 198301:202112. The decile portfolios are sorted based on the predicted deciles monthly, which are 
the deciles with the highest predicted probabilities. The column “market” reports the performance of the buy-
and-hold strategy using all common stocks in the three major exchanges. The cumulative returns are in decimal 
unit representing gross returns in the sample period. 𝛼′𝑠 are for the corresponding factor models, e.g., CAPM 
or Fama-French 3 Factor model. The 𝑡  statistics for the 𝛼′𝑠  are Newey-West 	𝑡  statistics of lag 6. The 
performance statistics are based on excess return adjusted with risk-free rate, i.e., 30-day US treasury bill. We 
report annualized Sharpe ratios. Turnover is defined as the average total percentage of holding changes in 
absolute value. Max drawdown is defined as the max difference between current price and the most recent 
price peak in percentage across all months in our sample period. Panel A reports the equal-weight portfolio 
performance, while Panel B reports the value-weight portfolio performance. A robustness check of the 
portfolio performance using only the stocks above the median market capitalization of the market is included 
in the Appendix Table A7. 

Panel A: Equal-Weight Decile Portfolios 
Statistic Market lo 2 3 4 5 6 7 8 9 hi hi-lo 
Mean Excess Return 0.009 -0.003 0.002 0.002 0.005 0.004 0.008 0.011 0.013 0.015 0.023 0.023 
Cumulative Return 24.199 -0.963 0.127 0.371 3.620 3.785 32.084 128.769 231.499 486.085 12669.407 40473.880 
CAPM Alpha 0.000 -0.014 -0.007 -0.006 -0.003 -0.001 0.003 0.005 0.005 0.006 0.014 0.025 
 (0.049) (-4.229) (-3.969) (-2.911) (-1.495) (-0.535) (1.645) (3.271) (2.677) (3.013) (4.258) (10.406) 
FF3F Alpha 0.000 -0.013 -0.007 -0.006 -0.004 -0.002 0.002 0.004 0.004 0.006 0.014 0.024 
 (0.340) (-5.333) (-7.168) (-4.445) (-3.458) (-1.295) (1.882) (6.342) (5.111) (6.524) (6.418) (12.036) 
FF5F Alpha 0.002 -0.007 -0.006 -0.006 -0.005 -0.003 0.000 0.003 0.003 0.006 0.017 0.021 
 (1.513) (-3.350) (-5.439) (-3.902) (-4.064) (-1.818) (0.170) (5.254) (3.877) (6.274) (6.643) (12.483) 
Standard Deviation 0.058 0.092 0.066 0.057 0.052 0.036 0.037 0.042 0.053 0.063 0.080 0.029 
Sharpe Ratio 0.515 -0.102 0.131 0.144 0.310 0.385 0.766 0.940 0.860 0.848 1.023 2.729 
Turnover 0.105 0.163 0.102 0.086 0.074 0.063 0.053 0.060 0.074 0.093 0.142 0.153 
Max Drawdown -0.607 -0.904 -0.666 -0.666 -0.676 -0.663 -0.468 -0.476 -0.539 -0.543 -0.579 -0.154 
Mean N 5342 1168 474 122 154 270 930 558 493 294 879 2047 
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Table 5 (Continues) 

Panel B: Value-Weight Decile Portfolios 
Statistic Market lo 2 3 4 5 6 7 8 9 hi hi-lo 
Mean Excess Return 0.008 -0.002 0.003 0.007 0.005 0.005 0.007 0.009 0.009 0.015 0.014 0.013 
Cumulative Return 19.73 -0.96 -0.04 6.331 3.045 5.462 17.575 37.591 40.521 246.082 120.288 274.392 
CAPM Alpha 0.00 -0.02 -0.01 -0.003 -0.004 -0.002 0.001 0.002 0.001 0.004 0.002 0.014 
 (-1.67) (-5.02) (-4.17) (-1.767) (-1.803) (-0.928) (0.595) (2.834) (0.743) (1.792) (0.699) (5.701) 
FF3F Alpha 0.000 -0.01 -0.01 -0.003 -0.005 -0.003 0.000 0.001 0.001 0.005 0.004 0.014 
 (-1.74 (-5.8) (-4.54) (-1.609) (-3.008) (-2.180) (-0.276) (2.412) (1.030) (3.059) (1.661) (6.492) 
FF5F Alpha 0.000 -0.006 -0.004 -0.001 -0.006 -0.004 -0.002 0.001 0.001 0.006 0.008 0.011 
 (-1.003) (-3.381) (-2.995) (-0.741) (-3.732) (-3.327) (-3.576) (1.126) (0.733) (4.043) (3.380) (4.809) 
Standard Deviation 0.045 0.099 0.078 0.070 0.059 0.047 0.041 0.044 0.054 0.073 0.088 0.044 
Sharpe Ratio 0.583 -0.058 0.135 0.336 0.280 0.379 0.602 0.692 0.607 0.691 0.558 1.011 
Turnover 0.057 0.132 0.096 0.070 0.064 0.051 0.047 0.048 0.065 0.087 0.118 0.125 
Max Drawdown -0.527 -0.958 -0.824 -0.753 -0.720 -0.625 -0.502 -0.509 -0.616 -0.559 -0.702 -0.414 
Mean N 5342 1168 474 122 154 270 930 558 493 294 879 2047 
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Table 6 Prediction Precision, Information Incompleteness, and Predictors 

This table reports the Fama-MacBeth regression results in the investigation of the relation between 
prediction precision and firm characteristics and between information incompleteness and firm 
characteristics. Panel A reports the results for the prediction precision, where the prediction precision is 
based on the aggregated predictions from the individual classifiers. Panel B reports the results for the 
information incompleteness, where the measure is also based on the aggregated probability predictions 
from the individual classifiers. We report for only variables that are statistically significant in the linear 
regressions, and we split the table in to the positive column and the negative column, where the positive 
column reports results for variables that are positively related to the prediction precision and the negative 
column reports for the variables that are negatively related to the prediction precision. “FM	𝑡” represents 
Fama-MacBeth 𝑡 statistics. 

Panel A: Precision vs Firm Characteristics 
Positive Relation Negative Relation 

  Coefficient FM t   Coefficient FM t 
chmom 0.007 10.564 pchsale_pchinvt -0.001 -1.962 
baspread 0.021 8.839 depr -0.001 -2.108 
mve_ia 0.004 8.261 cfp -0.001 -2.411 
age 0.003 8.109 roic -0.001 -2.527 
turn 0.008 7.218 sue -0.001 -2.553 
betasq 0.015 7.001 currat -0.003 -2.806 
idiovol 0.008 6.852 cashdebt -0.001 -2.933 
mom12m 0.005 6.390 gma -0.002 -3.102 
ms 0.003 6.099 securedind1 -0.002 -3.234 
dy 0.003 4.963 salecash -0.001 -3.449 
pctacc 0.001 4.690 rd_mve -0.002 -3.518 
retvol 0.011 4.615 secured -0.002 -3.636 
mom1m 0.005 4.461 divi0 -0.018 -3.973 
nincr 0.001 4.328 roeq -0.002 -4.242 
agr 0.002 4.248 nanalyst -0.003 -4.369 
rd0 0.003 3.395 divi1 -0.022 -4.518 
chtx 0.001 2.742 mom36m -0.002 -4.592 
absacc 0.001 2.468 rsup -0.001 -4.717 
pchcapx_ia 0.001 2.369 fgr5yr -0.003 -4.934 
sgr 0.001 2.311 sp -0.002 -5.305 
pchdepr 0.001 1.757 ep -0.004 -5.461 
lev 0.001 1.691 disp -0.003 -5.878 
saleinv 0.001 1.687 zerotrade -0.003 -5.933 
ill 0.001 1.683 std_turn -0.004 -6.393 
   cash -0.004 -7.224 

   sfe -0.004 -7.435 
   bm -0.003 -7.991 
   beta -0.017 -9.232 
   roaq -0.007 -9.760 
   mom6m -0.011 -11.793 

            
   Constant 0.175 11.962 
   102 Characteristics Y   
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   Industry FE Y   
   Past Return Decile Y   
   Mean NOBS 5362   
   Mean Adj. 𝑅% 0.028   

 

Panel B: Information Incompleteness vs Firm Characteristics 
Positive Relation Negative Relation 

 Coefficient FM t  Coefficient FM t 
disp 0.006 26.790 dolvol -0.002 -1.656 
cashdebt 0.004 16.989 pchsale_pchxsga -0.001 -1.807 
sp 0.007 16.308 chempia -0.001 -1.845 
roic 0.005 16.176 invest 0.000 -1.904 
fgr5yr 0.008 15.185 quick -0.001 -1.916 
roeq 0.002 13.048 lev -0.001 -2.270 
roaq 0.014 12.932 rd_sale 0.000 -2.332 
gma 0.004 10.898 sgr 0.000 -2.375 
hire 0.002 10.182 operprof 0.000 -2.558 
mom6m 0.019 10.061 turn -0.003 -2.792 
bm 0.005 9.776 std_dolvol -0.002 -3.929 
egr 0.002 9.758 absacc -0.002 -4.738 
cash 0.007 9.657 betasq -0.023 -5.107 
pricedelay 0.002 9.588 mom1m -0.015 -5.186 
cfp 0.004 9.347 saleinv -0.001 -5.206 
securedind1 0.003 9.296 maxret -0.004 -5.260 
secured 0.005 9.161 pctacc -0.002 -5.516 
rsup 0.003 9.141 mom12m -0.005 -6.721 
divi1 0.031 8.520 pchdepr -0.001 -6.801 
lgr 0.001 8.451 rd0 -0.004 -7.313 
sue 0.002 8.306 mve_ia -0.008 -7.339 
ipo1 0.024 8.038 chtx -0.001 -7.969 
currat 0.004 7.508 chfeps -0.001 -8.650 
divi0 0.026 7.179 baspread -0.018 -9.178 
ep 0.006 6.878 mve -0.012 -9.222 
beta 0.032 6.591 nincr -0.002 -10.078 
rd_mve 0.002 6.169 dy -0.008 -10.279 
salerec 0.001 6.044 ps -0.002 -10.558 
chcsho 0.001 5.805 retvol -0.019 -11.338 
convind1 0.005 5.447 agr -0.004 -11.847 
std_turn 0.002 5.227 divo0 -0.007 -12.840 
nanalyst 0.003 5.036 idiovol -0.015 -13.423 
mom36m 0.004 4.958 ms -0.006 -13.767 
salecash 0.001 4.845 chmom -0.013 -13.848 
tang 0.002 4.728 age -0.012 -23.631 
aeavol 0.001 4.557       
sfe 0.003 4.276       
depr 0.001 4.212       
zerotrade 0.002 3.845    
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pchgm_pchsale 0.001 3.684    
chinv 0.001 3.618    
chnanalyst 0.000 3.141    
sin1 0.005 3.112    
grcapx 0.000 2.702 Constant 3.17 717.03 
ear 0.000 2.551 102 Characteristics Y   
roavol 0.001 2.418 Industry FE Y   
cinvest 0.000 2.203 Past Return Decile Y   
cashpr 0.001 1.910 Mean_NOBS 5362   
herf 0.007 1.778 Mean Adj. 𝑅% 0.589   
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Table 7 Stock Return, Precision, and Information Incompleteness 

This table reports for the relations between the return and information uncertainty measures and the relations 
between the return prediction precision and the information incompleteness. Specifically, Panel A reports for 
the Fama-MacBeth regression results investigating the relation between future monthly stock returns and the 
information uncertainty measures including the past 12-month prediction precisions and the information 
incompleteness computed based on the predicted probabilities. Panel B reports the results from the Fama-
MacBeth regression examining the relation between the prediction precision and the information 
incompleteness for all individual classifiers and the aggregated predictions. In the regressions, we control for 
the 102 firm characteristics, industry fixed effects, and past return decile. The 𝑡 statistics are Fama-MacBeth 
𝑡	statistics. 

Panel A: Return vs Prediction Precision and Information Incompleteness 
Dependent Variable   Return   
  (1) (2) (3) 
Precision -0.022  -0.022 
 (-5.420)  (-5.530) 
Info. Incomp.  -0.039 -0.047 
  (-4.743) (-6.459)     
    
Constant 0.063 0.182 0.213 
 (1.356) (3.346) (4.084) 
102 Characteristics Y Y Y 
Industry FE Y Y Y 
Past Return Decile Y Y Y 
Mean N 5362 5362 5362 
Mean Adj. 𝑅% 0.100 0.094 0.101 

 

Panel B: Relation between Precision and Information Incompleteness 
Dependent Variable                                                      Prediction Success 

 (1) (2) (3) (4) (5) 
Models Aggregate Ann Tanh Ann Rectifier GBT RF 
Info. Incomp. -0.440 -0.274 -0.334 -0.324 -0.588 

 (-24.905) (-37.920) (-20.461) (-31.996) (-15.175) 
       

Constant 1.571 1.087 1.221 1.255 2.072 
 (28.300) (22.682) (23.742) (21.267) (16.778) 

102 Characteristics Y Y Y Y Y 
Industry FE Y Y Y Y Y 
Past Return Decile Y Y Y Y Y 
Mean N 5362 5362 5362 5362 5362 
Mean Adj. 𝑅% 0.032 0.034 0.034 0.030 0.033 
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Table 8 Portfolio Performance Conditional on Precision and Information Incompleteness 

This table reports the economic performance of the conditional portfolios constructed based on the 
aggregated predictions from the individual classifiers using only the stocks in the highest decile of past 12-
month precision and the stocks in the lowest decile of the information incompleteness. We report the results 
of the portfolios conditional on prediction precision (information incompleteness) in Panel A and B (C and D). 
The statistics are calculated based on the out-of-sample period covering 198301:202112. The decile portfolios 
are sorted based on the predicted deciles monthly, which are the deciles with the highest predicted 
probabilities. The column “market” reports the performance of the buy-and-hold strategy using all common 
stocks in the three major exchanges. The cumulative returns are in decimal unit representing gross returns in 
the sample period. 𝛼′𝑠 are for the corresponding factor models, e.g., CAPM or Fama-French 3 Factor model. 
The 𝑡 statistics for the 𝛼′𝑠 are Newey-West	𝑡 statistics of lag 6. The performance statistics are based on excess 
return adjusted with risk-free rate, i.e., 30-day US treasury bill. We report annualized Sharpe ratios. Turnover is 
defined as the average total percentage of holding changes in absolute value. Max drawdown is defined as 
the max difference between current price and the most recent price peak in percentage across all months in 
our sample period. Panel A and C report the equal-weight portfolio performance, while Panel B and D report 
the value-weight portfolio performance.  

Panel A: Equal-Weight Decile Portfolios Conditional on Precision 
Statistic lo 2 3 4 5 6 7 8 9 hi hi-lo 
Mean Excess Return -0.261 -0.114 -0.066 -0.036 -0.013 0.010 0.035 0.067 0.118 0.365 0.623 
Cumulative Return -1.00e+00 -1.00e+00 -1.00e+00 -1.00e+00 -9.99e-01 5.43e+01 7.04e+06 8.67e+12 1.36e+22 1.03e+62 3.51e+97 
CAPM Alpha -0.270 -0.123 -0.074 -0.044 -0.020 0.003 0.028 0.059 0.108 0.351 0.618 
 (-39.424) (-30.663) (-28.059) (-21.338) (-13.471) (1.877) (14.822) (19.723) (20.576) (23.863) (29.096) 
FF3F Alpha -0.270 -0.123 -0.074 -0.044 -0.020 0.002 0.028 0.059 0.108 0.354 0.620 
 (-38.273) (-28.938) (-26.051) (-21.448) (-16.107) (3.021) (24.337) (27.074) (24.885) (25.407) (29.719) 
FF5F Alpha -0.266 -0.120 -0.072 -0.043 -0.020 0.002 0.028 0.059 0.109 0.355 0.530 
 (-40.880) (-29.175) (-24.615) (-20.785) (-14.244) (2.418) (24.275) (27.356) (24.983) (24.968) (29.086) 
Standard Deviation 0.074 0.066 0.057 0.052 0.045 0.045 0.048 0.057 0.077 0.157 0.160 
Sharpe Ratio -12.199 -6.031 -3.980 -2.435 -0.982 0.743 2.540 4.071 5.311 8.040 13.474 
Turnover 0.107 0.021 0.016 0.013 0.008 0.007 0.007 0.011 0.020 0.123 0.115 
Max Drawdown -1.000 -1.000 -0.998 -0.980 -0.841 -0.487 -0.240 -0.140 -0.131 0.000 0.000 
Mean N 116 47 12 15 27 93 55 49 29 87 204 

 

Panel B: Value-Weight Decile Portfolios Conditional on Precision 
Statistic lo 2 3 4 5 6 7 8 9 hi hi-lo 
Mean Excess Return -0.246 -0.114 -0.065 -0.036 -0.013 0.010 0.035 0.068 0.118 0.290 0.533 
Cumulative Return -1.00e+00 -1.00e+00 -1.00e+00 -1.00e+00 -9.99e-01 5.85e+01 7.25e+06 1.06e+13 1.45e+22 6.48e+50 1.33e+86 
CAPM Alpha -0.255 -0.123 -0.073 -0.044 -0.020 0.003 0.028 0.059 0.108 0.278 0.530 
 (-34.791) (-30.709) (-27.065) (-20.764) (-13.267) (1.955) (14.958) (20.538) (20.779) (23.901) (28.249) 
FF3F Alpha -0.255 -0.123 -0.073 -0.044 -0.020 0.003 0.028 0.059 0.109 0.279 0.532 
 (-33.617) (-29.456) (-25.371) (-20.578) (-15.921) (3.152) (24.693) (27.613) (24.991) (26.041) (28.923) 
FF5F Alpha -0.251 -0.120 -0.072 -0.043 -0.020 0.002 0.028 0.059 0.109 0.282 0.530 
 (-35.883) (-29.636) (-23.925) (-19.771) (-14.388) (2.564) (23.832) (28.264) (25.152) (25.277) (29.086) 
Standard Deviation 0.079 0.067 0.058 0.053 0.046 0.046 0.048 0.056 0.077 0.128 0.136 
Sharpe Ratio -10.778 -5.910 -3.907 -2.388 -0.977 0.749 2.545 4.201 5.271 7.847 13.582 
Turnover 0.089 0.016 0.006 0.004 0.004 0.006 0.006 0.008 0.013 0.071 0.080 
Max Drawdown -1.000 -1.000 -0.998 -0.982 -0.849 -0.490 -0.245 -0.149 -0.139 0.000 0.000 
Mean N 116 47 12 15 27 93 55 49 29 87 204 
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Table 8 (Continues) 

Panel C: Equal-Weight Decile Portfolios Conditional on the Lowest Decile of Information Incompleteness 
Statistic lo 2 3 4 5 6 7 8 9 hi hi-lo 
Mean Excess Return -0.014 -0.002 0.005 0.005 0.005 0.010 0.012 0.014 0.019 0.067 0.078 
Cumulative Return -1.00E+00 -9.22E-01 1.75E+00 3.83E+00 6.45E+00 6.46E+01 1.59E+02 4.66E+02 1.97E+03 1.85E+11 3.81E+14 
CAPM Alpha -0.026 -0.013 -0.004 -0.003 0.001 0.005 0.007 0.008 0.010 0.054 0.078 
 (-4.542) (-4.311) (-1.600) (-1.102) (0.425) (3.354) (4.370) (3.561) (3.232) (7.111) (12.474) 
FF3F Alpha -0.024 -0.012 -0.004 -0.004 0.000 0.004 0.005 0.006 0.010 0.057 0.078 
 (-5.190) (-5.225) (-2.025) (-2.020) (-0.134) (3.792) (5.125) (4.651) (3.886) (7.955) (12.334) 
FF5F Alpha -0.015 -0.011 -0.003 -0.005 -0.001 0.003 0.004 0.004 0.009 0.064 0.077 
 (-3.164) (-4.117) (-1.751) (-2.339) (-0.758) (2.721) (4.337) (3.838) (3.411) (7.561) (10.886) 
Standard Deviation 0.133 0.077 0.067 0.058 0.035 0.033 0.038 0.049 0.067 0.153 0.090 
Sharpe Ratio -0.370 -0.111 0.232 0.303 0.485 1.010 1.054 1.020 0.967 1.512 2.980 
Turnover 0.239 0.111 0.067 0.055 0.042 0.038 0.039 0.055 0.080 0.239 0.239 
Max Drawdown -0.967 -0.840 -0.579 -0.751 -0.614 -0.384 -0.374 -0.516 -0.637 -0.581 -0.295 
Mean N 117 48 13 16 27 93 56 50 30 88 206 

 

Table 8 (Continues) 

Panel D: Value-Weight Decile Portfolios Conditional on the Lowest Decile of Information Incompleteness 
Statistic lo 2 3 4 5 6 7 8 9 hi hi-lo 
Mean Excess 
Return -0.026 -0.003 0.004 0.005 0.007 0.008 0.009 0.010 0.018 0.037 0.060 

Cumulative 
Return -1.00E+00 -9.6E-01 6.1E-01 2.7E+00 1.2E+01 2.5E+01 5.0E+01 4.8E+01 9.1E+02 1.2E+05 3.81E+14 

CAPM Alpha -0.040 -0.014 -0.005 -0.003 0.001 0.003 0.004 0.003 0.009 0.022 0.059 
 (-6.697) (-4.415) (-1.533) (-1.444) (0.573) (1.810) (2.847) (1.407) (2.211) (3.408) (8.917) 
FF3F Alpha -0.038 -0.013 -0.005 -0.004 0.000 0.002 0.003 0.002 0.009 0.024 0.059 
 (-7.742) (-4.606) (-1.572) (-2.234) (0.041) (1.416) (2.464) (1.145) (2.375) (4.266) (9.133) 
FF5F Alpha -0.026 -0.011 -0.003 -0.005 -0.002 0.000 0.002 0.000 0.007 0.032 0.055 
 (-4.693) (-3.702) (-0.895) (-2.522) (-0.896) (0.256) (2.091) (0.074) (2.115) (4.539) (7.666) 
Standard 
Deviation 0.150 0.091 0.079 0.062 0.048 0.037 0.041 0.052 0.078 0.166 0.131 

Sharpe Ratio -0.601 -0.097 0.192 0.266 0.484 0.712 0.784 0.645 0.784 0.774 1.582 
Turnover 0.205 0.098 0.053 0.049 0.034 0.036 0.036 0.048 0.069 0.207 0.206 
Max 
Drawdown -0.997 -0.881 -0.662 -0.705 -0.611 -0.374 -0.409 -0.693 -0.630 -0.666 -0.878 

Mean N 117 48 13 16 27 93 56 50 30 88 206 
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Table 9 Information Uncertainty and Accounting Quality 

This table reports the results from the regression with ordinary least square estimation using the firm-year 
data sample covering 2000:2021. The prediction precision is defined as the 12-month prediction precision in 
the lagged fiscal year, while the information incompleteness is defined in Section 5 as the average information 
incompleteness in the lagged fiscal year. Appendix Table A5 details the definition of the dependent and the 
control variables. The dependent variables are not included in the return prediction practice. The 𝑡	statistics 
are robust statistics with error double clustered using industry and year. 

 (1) (2) (3) (4) 
Variable Bog Index M Score Altman Z Score Restatement 
Precision 0.264 0.006 0.047 0.001 
 (1.558) (0.976) (4.553) (0.083) 
Info. Incomp. 1.234 0.095 -0.044 0.050 
 (3.038) (6.668) (-1.795) (2.498) 
Volatility 0.738 0.006 0.074 -0.001 
 (7.167) (1.889) (13.285) (-0.176) 
Market Adj. Return -0.035 0.001 -0.015 0.001 
 (-1.332) (1.422) (-11.986) (0.741) 
Log(Sale) 0.308 0.009 -0.031 0.004 
 (8.475) (7.480) (-14.807) (2.632) 
Leverage 0.857 0.044 0.198 0.007 
 (5.969) (8.861) (23.334) (1.038) 
Cash -0.385 -0.016 -0.142 -0.013 
 (-2.005) (-2.469) (-12.671) (-1.451) 
Tobin's Q -0.048 0.000 -0.007 -0.001 
 (-3.142) (0.924) (-9.361) (-1.474) 
Discretionary Accrual 0.289 0.036 0.019 0.004 
 (1.436) (6.097) (1.832) (0.438) 
Log(Firm Age) -0.487 0.010 0.084 -0.012 
 (-4.372) (2.893) (13.545) (-2.351) 
Log(Analyst) 0.339 0.002 -0.017 0.005 
 (6.633) (1.205) (-5.475) (2.199) 
Fortune 500 -0.042 -0.006 -0.018 0.002 
 (-0.316) (-1.225) (-2.172) (0.337) 
      
Industry FE Y Y Y Y 
Year FE Y Y Y Y 
Error Cluster Double Clustering Double Clustering Double Clustering Double Clustering 
N 45248 56889 56889 56889 
Adj. 𝑅% 0.260 -0.109 0.058 -0.126 
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Table 10 Information Uncertainty and Governance 

This table reports the results from ordinary least square regressions. Panel A reports the results on the relation 
between governance and information uncertainty measures, including prediction precision and information 
incompleteness defined in Section 4 and 5. Panel B reports results on the relation between the outcome of 
governance and information uncertainty measures. The prediction precision is defined as the 12-month 
prediction precision in the lagged fiscal year, while the information incompleteness is defined as the average 
information incompleteness in the lagged fiscal year. Appendix Table A5 details the definition of the dependent 
and the control variables. The dependent variables are not included in the return prediction practice. The 
𝑡	statistics are robust statistics with error double clustered using industry and year. 

Panel A: Governance  

Variable Institutional 
Ownership CEO Chairman Salary Size 

Precision 0.021 -0.012 -17.053 -0.041 
 (0.363) (-0.524) (-1.325) (-2.421) 
Info. Incomp. 0.579 -0.271 -294.903 0.627 
 (4.293) (-3.821) (-8.656) (15.836) 
Volatility -0.056 0.027 -21.507 -0.120 
 (-1.749) (1.316) (-2.433) (-13.204) 
Market Adj. Return 0.021 0.002 1.011 0.026 
 (2.444) (0.675) (0.591) (12.967) 
Log(Sale) 0.035 0.063 92.064 0.644 
 (2.944) (8.290) (27.099) (185.922) 
Leverage -0.025 0.010 -8.523 0.067 
 (-0.533) (0.411) (-0.729) (4.828) 
Cash 0.353 0.018 19.836 -0.321 
 (5.497) (0.596) (1.257) (-17.711) 
Tobin's Q 0.004 0.001 2.030 0.022 
 (0.811) (0.664) (2.088) (19.250) 
Discretionary 
Accrual -0.069 -0.052 -42.666 0.054 
 (-1.057) (-1.517) (-2.338) (3.237) 
Log(Firm Age) 0.084 -0.033 56.375 0.043 
 (2.341) (-1.914) (6.525) (4.261) 
Log(Analyst) 0.065 -0.001 12.133 0.110 
 (3.805) (-0.153) (2.938) (22.315) 
Fortune 500 -0.038 -0.024 6.246 0.138 
 (-0.875) (-1.604) (0.750) (10.387) 
      
Industry FE Y Y Y Y 
Year FE Y Y Y Y 

Error Cluster Double Clustering Double 
Clustering 

Double 
Clustering 

Double 
Clustering 

N 50964 23651 32053 56663 
Adj. 𝑅% -0.125 0.106 0.125 0.574 
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Table 10 (Continues) 

Panel B: Governance Outcome 
 (1) (2) (3) 
Variable R&D Expenditure EPA Enforcement Cyber Attack 
Precision 0.009 0.000 -0.001 
 (2.162) (0.065) (-0.342) 
Info. Incomp. -0.113 -0.024 -0.020 
 (-11.109) (-1.787) (-1.992) 
Volatility -0.009 -0.002 -0.003 
 (-3.659) (-0.650) (-1.256) 
Market Adj. Return -0.003 0.000 0.000 
 (-4.373) (-0.643) (0.258) 
Log(Sale) -0.012 0.005 0.003 
 (-13.916) (4.085) (4.172) 
Leverage -0.004 -0.003 0.006 
 (-1.090) (-0.610) (1.781) 
Cash 0.025 -0.003 0.002 
 (5.079) (-0.503) (0.474) 
Tobin's Q 0.000 0.000 0.000 
 (0.636) (1.167) (-0.806) 
Discretionary Accrual -0.027 0.002 0.000 
 (-5.455) (0.431) (0.018) 
Log(Firm Age) 0.002 0.040 -0.008 
 (0.847) (11.442) (-3.358) 
Log(Analyst) 0.000 -0.001 -0.003 
 (0.061) (-0.531) (-2.218) 
Fortune 500 0.005 -0.008 0.010 
 (1.593) (-1.771) (3.121)     
Industry FE Y Y Y 
Year FE Y Y Y 
Error Cluster Double Clustering Double Clustering Double Clustering 
N 50963 56889 56889 
Adj. 𝑅% -0.115 -0.120 -0.120 
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Table 11 Information Uncertainty and Stakeholder Approval 

This table reports the results on the relation between return prediction information uncertainty measures and 
the stakeholder approval proxied with litigation cases from ordinary least square regressions. The dependent 
variables are dummies of value 1 and 0 representing whether a firm is involved in a specified type of litigation 
case. The prediction precision is defined as the 12-month prediction precision in the lagged fiscal year, while 
the information incompleteness is defined as the average information incompleteness in the lagged fiscal year. 
The information incompleteness is defined in Section 5. Appendix Table A5 details the definition of the 
dependent and the control variables. The dependent variables are not included in the return prediction practice. 
The 𝑡	statistics are robust statistics with error double clustered using industry and year. 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Variable All 
Litigation 

Civil 
Rights 

Environm
ent Illegal IP Labor 

Regulator
y 

Sharehold
er 

Precision 0.034 0.001 -0.001 -0.010 0.002 0.013 -0.003 0.043 
 (2.709) (0.348) (-0.242) (-1.395) (0.219) (1.630) (-1.401) (3.878) 
Info. Incomp. -0.124 -0.035 -0.006 -0.041 -0.064 -0.045 -0.005 -0.070 
 (-4.234) (-4.152) (-0.475) (-2.477) (-2.515) (-2.347) (-0.892) (-2.663) 
Volatility 0.096 0.000 0.007 0.008 -0.016 0.029 0.001 0.104 
 (14.381) (-0.012) (2.369) (2.126) (-2.740) (6.468) (0.540) (17.275) 
Market Adj. 
Return -0.006 0.000 0.000 0.001 -0.001 0.000 0.000 -0.008 
 (-3.953) (1.006) (0.019) (0.641) (-0.649) (-0.043) (0.921) (-5.975) 
Log(Sale) 0.023 0.002 -0.003 0.009 0.019 0.005 0.001 0.023 
 (9.395) (2.320) (-2.492) (6.460) (8.880) (3.242) (1.269) (10.436) 
Leverage 0.000 -0.004 -0.002 0.006 0.009 -0.001 0.000 0.017 
 (0.004) (-1.473) (-0.434) (0.994) (1.039) (-0.084) (0.172) (1.898) 
Cash 0.010 -0.001 0.003 -0.002 -0.006 0.009 0.000 0.007 
 (0.730) (-0.290) (0.472) (-0.301) (-0.544) (0.976) (0.170) (0.615) 
Tobin's Q -0.003 0.000 0.000 -0.001 -0.004 -0.002 0.000 -0.004 
 (-3.823) (-0.794) (0.943) (-2.073) (-5.384) (-3.545) (-0.574) (-5.117) 
Discretionary 
Accrual 0.009 0.001 -0.001 -0.003 0.013 0.006 0.001 0.018 
 (0.767) (0.231) (-0.257) (-0.400) (1.246) (0.708) (0.543) (1.687) 
Log(Firm Age) -0.038 0.008 -0.022 -0.001 0.083 0.013 0.003 -0.036 
 (-5.073) (3.595) (-6.354) (-0.235) (12.846) (2.564) (1.855) (-5.314) 
Log(Analyst) 0.048 0.000 0.002 0.001 0.003 0.005 -0.001 0.049 
 (13.238) (-0.356) (1.227) (0.550) (0.888) (1.940) (-1.526) (15.074) 
Fortune 500 0.045 0.008 0.020 0.025 0.016 0.031 0.003 0.030 
 (4.519) (2.814) (4.481) (4.548) (1.816) (4.793) (1.466) (3.355) 
          
Industry FE Y Y Y Y Y Y Y Y 
Year FE Y Y Y Y Y Y Y Y 

Error Cluster Double 
Clustering 

Double 
Clustering 

Double 
Clustering 

Double 
Clustering 

Double 
Clustering 

Double 
Clustering 

Double 
Clustering 

Double 
Clustering 

N 56889 56889 56889 56889 56889 56889 56889 56889 
Adj. 𝑅! -0.104 -0.126 -0.125 -0.123 -0.090 -0.117 -0.135 -0.105 
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Table 12 Information Uncertainty and the SEC Enforcement 

This table reports the results on the relation between return prediction information uncertainty measures and 
the SEC enforcement actions. The dependent variables are dummies of value 1 and 0 representing whether a 
firm is involved in a specified type of the SEC enforcement actions. The prediction precision is defined as the 
12-month prediction precision in the lagged fiscal year, while the information incompleteness is defined as 
the average information incompleteness in the lagged fiscal year. The information incompleteness is defined 
in Section 5. Appendix Table A5 details the definition of the dependent and the control variables. The 
dependent variables are not included in the return prediction practice. The 𝑡	statistics are robust statistics with 
error double clustered using industry and year. 

 (1) (2) (3) 
Variable 10K Comment Letter SEC Investigation AAER 
Precision -0.029 -0.003 0.001 
 (-1.904) (-0.378) (0.465) 
Info. Incomp. 0.095 0.067 -0.001 
 (2.640) (3.787) (-0.095) 
Volatility 0.011 -0.006 0.002 
 (1.285) (-1.446) (2.008) 
Market Adj. Alpha -0.001 0.001 -0.001 
 (-0.619) (1.063) (-1.990) 
Log(Sale) 0.017 0.003 0.001 
 (5.577) (1.661) (1.379) 
Leverage -0.003 0.002 -0.001 
 (-0.243) (0.348) (-0.626) 
Cash 0.037 -0.014 -0.001 
 (2.277) (-1.681) (-0.499) 
Tobin's Q 0.001 0.001 0.000 
 (0.812) (1.393) (-0.579) 
Discretionary Accrual -0.001 0.010 -0.002 
 (-0.082) (1.392) (-0.704) 
Log(Firm Age) -0.044 0.009 0.004 
 (-4.820) (2.037) (3.006) 
Log(Analyst) 0.001 0.006 0.000 
 (0.174) (2.715) (-0.048) 
Fortune 500 0.013 0.004 -0.002 
 (1.068) (0.713) (-0.923) 
     
Industry FE Y Y Y 
Year FE Y Y Y 
Error Cluster Double Clustering Double Clustering Double Clustering 
N 56889 56889 56889 
Adj. 𝑅% -0.039 -0.122 -0.135 
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Appendix 
Table A1 Modeling Windows 

This table reports the specification of the modeling windows. The models are updated every ten years in this 
paper. The starting date of the training process is January 1962. Every update will train the model using the 
training data set for in-sample fitting. The fitted models will make predictions for the following validation set 
and the best combination of architecture and hyperparameters are chosen to make the out-of-sample 
predictions in the testing periods. 

Window Train Start Train End Validation End Test End 
1 01/31/1962 12/31/1977 12/31/1982 12/31/1992 
2 01/31/1962 12/31/1987 12/31/1992 12/31/2002 
3 01/31/1962 12/31/1997 12/31/2002 12/31/2012 
4 01/31/1962 12/31/2007 12/31/2012 12/31/2021 

 

Table A2 Additional Optimization Choices 

We conduct a grid search for the best parameters and hyperparameters in training and validation data sets. 
We train all the sub-models first in the training data set. Then, we select the best performing model in the 
validation data set for the hyperparameter values. Panel A details the additional optimization choice of our 
grid search. Panel B reports the selected modeling parameters and hyperparameters after training and 
hyperparameter tuning. 

Model Parameter Choice 

ANN 
(ANN 
Rectifier/Tanh) 

Loss Function Cross entropy for classification/mean squared error for regression 
Learning Rate Adadelta with rho=0.99 and epsilon=1e-8 
Activation Rectifier or Tanh for two ANN models separately 
# Epochs 1000 

GBT 
Loss Function Cross entropy for classification/mean squared error for regression 
# Trees 1000 
Learning Rate 0.1 

RF Loss Function Cross entropy for classification/mean squared error for regression 
# Trees 1000 
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Table A3 Prediction Sample Firm Characteristics Summary Statistics  

The follow table reports the summary statistics of the firm characteristics following Green et al. 2017. We 
construct the sample such that the data is CRSP centric, and we attempt to include as many common share 
stocks listed on three major exchanges (NYSE, AMEX, and NASDAQ) as possible. However, we do not include 
other securities such as REITS. Our data construction avoids issues, including high volatility in the number of 
stocks from month to month. In our models, we normalize these following predictors monthly. 

Variable Mean Standard Deviation Min Median Max 
absacc 0.098 0.114 0.000 0.066 1.086 
acc -0.023 0.142 -1.039 -0.019 0.582 
aeavol 0.853 2.051 -1.000 0.290 21.222 
age 15.076 12.893 1.000 11.000 71.000 
agr 0.283 1.105 -0.693 0.083 35.398 
baspread 0.055 0.069 -0.430 0.036 0.985 
beta 1.083 0.651 -1.489 1.014 3.910 
betasq 1.602 1.810 0.000 1.032 15.291 
bm 0.755 0.726 -2.581 0.585 7.894 
bm_ia 23.174 691.727 -2360.690 0.021 16500.928 
cash 0.170 0.217 -0.143 0.076 0.980 
cashdebt -0.045 1.670 -382.788 0.127 2.851 
cashpr -0.570 55.119 -656.405 -0.510 594.905 
cfp 0.019 0.312 -4.130 0.042 7.626 
cfp_ia 12.595 303.092 -310.191 0.016 6795.637 
chatoia -0.005 0.243 -1.380 0.003 1.306 
chcsho 0.221 1.005 -0.892 0.008 28.089 
chempia -0.101 0.651 -24.055 -0.061 3.647 
chfeps 0.003 0.603 -19.140 0.000 20.950 
chinv 0.015 0.059 -0.287 0.001 0.426 
chmom -0.001 0.567 -8.455 -0.006 7.783 
chnanalyst 0.026 1.571 -42.000 0.000 38.000 
chpmia 0.305 7.505 -93.863 -0.004 111.909 
chtx 0.001 0.013 -0.121 0.000 0.145 
cinvest -0.027 6.895 -157.600 -0.002 3390.067 
convind 1.130 0.336 1.000 1.000 2.000 
currat 3.381 5.994 0.102 1.971 105.898 
depr 0.269 0.440 -0.984 0.152 8.147 
disp 0.171 0.465 0.000 0.044 12.500 
divi 2.006 0.263 1.000 2.000 3.000 
divo 1.998 0.246 1.000 2.000 3.000 
dolvol 11.129 3.048 -3.060 10.982 19.490 
dy 0.018 0.035 -6.122 0.001 0.556 
ear 0.003 0.083 -0.458 0.001 0.504 
egr 0.215 1.942 -38.569 0.082 43.328 
ep -0.026 0.364 -8.012 0.048 0.683 
fgr5yr 16.814 11.617 -74.000 14.830 208.830 
gma 0.376 0.389 -1.520 0.313 2.977 
grcapx 1.270 4.806 -18.500 0.177 67.915 
grltnoa 0.096 0.172 -0.917 0.060 1.256 
herf 0.067 0.081 0.003 0.043 1.000 
hire 0.091 0.339 -0.700 0.008 3.917 
idiovol 0.065 0.037 0.000 0.055 0.266 
ill 0.000 0.000 0.000 0.000 0.001 
indmom 0.142 0.300 -0.757 0.116 3.102 



3 
 

invest 0.100 0.235 -0.562 0.046 2.990 
ipo 1.058 0.234 1.000 1.000 2.000 
lev 2.191 4.712 0.000 0.668 73.048 
lgr 0.309 1.060 -0.792 0.080 15.515 
maxret 0.075 0.072 0.000 0.053 0.846 
mom12m 0.129 0.595 -0.972 0.051 11.365 

 

Table A3 (Continues) 

Variable Mean SD Min Median Max 
mom1m 0.010 0.155 -0.728 0.000 2.000 
mom36m 0.315 0.937 -0.986 0.141 14.514 
mom6m 0.054 0.368 -0.911 0.020 7.533 
ms 3.609 1.688 0.000 4.000 8.000 
mve 11.734 2.252 2.357 11.579 18.588 
mve_ia -189.253 7566.268 -26395.790 -364.757 142031.617 
nanalyst 4.884 6.657 0.000 2.000 57.000 
nincr 0.945 1.299 0.000 1.000 8.000 
operprof 0.831 1.603 -10.005 0.615 18.265 
orgcap 0.144 0.485 -0.702 0.015 8.223 
pchcapx_ia 3.754 54.529 -890.899 -0.561 939.472 
pchcurrat 0.194 1.229 -0.915 -0.004 23.397 
pchdepr 0.106 0.565 -0.961 0.023 7.789 
pchgm_pchsale -0.096 1.144 -20.502 -0.002 6.174 
pchquick 0.243 1.464 -0.938 -0.002 29.768 
pchsale_pchinvt -0.065 0.862 -10.579 0.013 4.163 
pchsale_pchrect -0.061 0.771 -10.015 -0.001 5.431 
pchsale_pchxsga 0.029 0.427 -2.897 -0.001 6.642 
pchsaleinv 0.154 1.035 -121.036 0.010 30.974 
pctacc -0.647 5.934 -63.600 -0.258 65.444 
pricedelay 0.143 0.999 -16.494 0.062 13.838 
ps 4.089 1.762 0.000 4.000 9.000 
quick 2.667 5.466 0.061 1.294 98.567 
rd 2.077 0.367 1.000 2.000 3.000 
rd_mve 0.065 0.112 -0.034 0.028 2.228 
rd_sale 0.825 6.751 -218.737 0.031 210.899 
realestate 0.266 0.200 0.000 0.231 1.000 
retvol 0.033 0.026 0.000 0.026 0.262 
roaq -0.009 0.070 -1.047 0.006 0.219 
roavol 0.032 0.069 0.000 0.013 1.238 
roeq -0.007 0.196 -4.833 0.022 2.773 
roic -0.128 1.152 -20.737 0.066 1.266 
rsup -0.048 3.987 -2580.272 0.013 6.239 
salecash 50.266 161.272 -1230.906 9.833 2942.250 
saleinv 26.255 71.165 -106.622 7.549 1203.586 
salerec 11.789 50.632 -21796.000 5.918 276.499 
secured 0.571 0.517 0.000 0.585 4.013 
securedind 1.387 0.487 1.000 1.000 2.000 
sfe -0.596 7.512 -326.471 0.043 4.062 
sgr 0.239 0.789 -0.984 0.100 13.743 
sin 1.007 0.085 1.000 1.000 2.000 
sp 2.222 3.651 -35.942 1.028 55.651 
std_dolvol 0.862 0.410 0.000 0.794 3.332 
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std_turn 4.587 13.885 0.000 1.914 625.712 
stdacc 9.588 60.087 0.000 0.141 1138.612 
stdcf 17.605 119.120 0.000 0.156 2723.991 
sue -0.006 0.190 -11.824 0.000 3.305 
tang 0.541 0.157 0.000 0.550 0.984 
tb -0.118 1.532 -25.942 -0.072 12.172 
turn 1.103 2.197 0.000 0.531 76.062 
zerotrade 1.369 3.366 0.000 0.000 20.046 
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Table A4 Selected Models after Training and Hyperparameter Tuning 

This table reports the selected hyperparameters for each combination of models and training and validation 
period. Column “Classification” reports the parameters for the classification models of the corresponding 
modeling architecture, while column “Regression” reports the parameter for the regression models of the 
corresponding modeling architecture. 

Model Training Window Validation Window Classification Regression 

ANN 
(Tanh) 

Train Start Train End 
Validation 
Start 

Validation 
End Hidden l1 Hidden l1 

01/31/1962 12/31/1977 01/01/1978 12/31/1982 16 0 (64, 32, 16) 0 
01/31/1962 12/31/1987 01/01/1988 12/31/1992 16 0 (64, 32, 16, 8) 0 
01/31/1962 12/31/1997 01/01/1998 12/31/2002 (32, 16) 0 (16, 8) 0 
01/31/1962 12/31/2007 01/01/2008 12/31/2012 16 0 8 0 

         

ANN 
(Rectifier) 

Train Start Train End 
Validation 
Start 

Validation 
End Hidden l1 Hidden l1 

01/31/1962 12/31/1977 01/01/1978 12/31/1982 (128, 64, 32, 16, 8) 0 (32, 16) 0 
01/31/1962 12/31/1987 01/01/1988 12/31/1992 (128, 64, 32) 0 8 0 
01/31/1962 12/31/1997 01/01/1998 12/31/2002 (128, 64, 32) 0 (128, 64, 32) 0 
01/31/1962 12/31/2007 01/01/2008 12/31/2012 (128, 64, 32) 0 (64, 32, 16, 8) 0 

         

GBT 

Train Start Train End 
Validation 
Start 

Validation 
End Max Depth Max Depth 

01/31/1962 12/31/1977 01/01/1978 12/31/1982 2 4 
01/31/1962 12/31/1987 01/01/1988 12/31/1992 4 4 
01/31/1962 12/31/1997 01/01/1998 12/31/2002 4 2 
01/31/1962 12/31/2007 01/01/2008 12/31/2012 4 4 

         

RF 

Train Start Train End 
Validation 
Start 

Validation 
End Max Depth Max Depth 

01/31/1962 12/31/1977 01/01/1978 12/31/1982 8 8 
01/31/1962 12/31/1987 01/01/1988 12/31/1992 8 8 
01/31/1962 12/31/1997 01/01/1998 12/31/2002 8 8 
01/31/1962 12/31/2007 01/01/2008 12/31/2012 8 8 
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Table A5 Variable Definition for the Information Environment Tests 

The table below first describes the main variable definitions we use in this paper, including their possible values 
and calculations in Panel A and then details the calculation of discretionary accrual in this paper using the 
Compustat database following the Jones model as modified by Dechow et al. (1995) in Panel B. 

Panel A: Information Environment Test Variable Definition 
Variables Description Variable Value and Calculation 
10K Comment Letter This variable is the SEC comment letter 

record from Audit Analytics. The SEC 
publicizes the comment letter records 
since 2005. 

1 if the firm-year is associated with a comment 
letter related to 10K form, 0 otherwise. 

AAER This variable is the SEC AAER obtained 
from University of South California (see 
Dechow et al. 2011). 

1 if the firm-year is in the SEC's accounting and 
auditing enforcement records, 0 otherwise. 

Annual Volatility This variable is the stock return volatility 
aggregated to the fiscal year calculated 
with CRSP database. 

Aggregated 12-month return volatility at the fiscal 
year level. 

Cash This variable is the cash holding amount 
estimated with Compustat database. 

Ratio between cash holding (Compustat item che) 
and total assets (Compustat item at). 

Discretionary 
Accrual  

This variable is the discretionary accruals 
estimated using the modified Jones 
method (see Dechow et al. 1995). 

The calculation is detailed in Table A4 Panel B. 

Fortune 500  This variable is a dummy of whether a 
firm is a Fortune 500 firm from the 
Compustat database. 

1 if the firm is a Fortune 500 company, 0 
otherwise. 

Restatement This variable is a dummy of restatements 
with negative changes on earnings from 
Audit Analytics. 

1 if the fiscal period is associated with an income-
reducing restatement, 0 otherwise. 

Leverage This variable is the leverage level 
estimated with Compustat database. 

Ratio of long-term debt (Compustat item ltd) to 
total assets (Compustat item at). 

Litigation This variable is a dummy variable 
summarizing the specified type of 
litigation from Audit Analytics database. 

1 if the firm-year is associated with the specified 
type of litigation, which can be shareholder, 
environmental, civil rights, regulatory, labor, 
intellectual property, illegal activities, or all of 
these types together, 0 otherwise. 

Ln (Analyst)  This variable is the number of distinct 
analysts who follow the firm from the 
I/B/E/S database. 

Log of the number of equity research analysts 
covering the firm. 

Ln (Firm Age) This variable is the number of years since 
a firm appeared in the Compustat 
database. 

Log of firm age in years. 

Size This variable is the sales volume as a size 
control variable from Compustat 
database. 

Log of sales (Compustat item sale) 
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Table A5 (Continued) 

Variables Description Variable Value and Calculation 
Market Adjusted 
Return 

This variable is the market-adjusted 
return for the fiscal year.  

Difference between fiscal period holding return 
and the CRSP value-weight market holding return 
calculated using CRSP database. 

Power This variable is the CEO’s pay slice out of 
the top five executives (see Bebchuk et 
al. 2011). 

CEO total compensation divided by the total 
compensation of the rest of the top five 
executives. 

SEC Investigation This variable is the SEC undisclosed 
investigation record obtained through 
Freedom of Information Act (FOIA) 
request. 

1 if the firm-year is under the SEC’s undisclosed 
investigation, 0 otherwise. 

Tobin’s Q This variable is Tobin’s Q, estimated with 
the Compustat database. 

Tobin’s Q from the last fiscal year is calculated as  
𝑄 = "#$%&	())*$)+,%-.*$	/012$345##.	/012$3

"#$%&	())*$)
, where book 

equity is the shareholders’ equity (Compustat item 
seq) adjusted with deferred taxes (Compustat item 
txdb) and preferred shares, and market equity is 
the fiscal year end stock price (Compustat item 
prcc_f) multiplied by outstanding common shares 
(Compustat item csho).  
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Table A5 (Continues) 

Panel B: Discretionary Accrual Calculation 
Step 1 Data Preparation The discretionary accrual is calculated following the modified Jones model. To obtain 

robust estimation of the average two-digit SIC code–level discretionary accrual, three 
types of firms are excluded from the estimation process: 

1. Firms with total assets and lag 1 total asset smaller than 1 million USD, 
2. Firms associated with a 2-digit SIC code of less than ten fiscal year 

observations in the Compustat database, and 
3. Firms with missing values in total assets, lag 1 total assets, sales, lag 1 sales, 

income, operating net cash flow, and plant, property, and equipment. 
Step 2 Raw Input Preparation %𝑇𝑜𝑡𝑎𝑙	𝐴𝑐𝑐𝑟𝑢𝑎𝑙$ =

𝑇𝑜𝑡𝑎𝑙	𝐼𝑛𝑐𝑜𝑚𝑒$ − 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔	𝑁𝑒𝑡	𝐶𝑎𝑠ℎ	𝐹𝑙𝑜𝑤$
𝑇𝑜𝑡𝑎𝑙	𝐴𝑠𝑠𝑒𝑡𝑠$46

 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒	𝐺𝑟𝑜𝑤𝑡ℎ$ = 𝑆𝑎𝑙𝑒𝑠$ − 𝑆𝑎𝑙𝑒𝑠$46 
𝑅𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒	𝐶ℎ𝑎𝑛𝑔𝑒$ = 𝑇𝑜𝑡𝑎𝑙	𝑅𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒$ − 𝑇𝑜𝑡𝑎𝑙	𝑅𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒$46 

%𝑆𝑎𝑙𝑒𝑠$ =
𝑅𝑒𝑣𝑒𝑛𝑢𝑒	𝐺𝑟𝑜𝑤𝑡ℎ$ − 𝑅𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒	𝐶ℎ𝑎𝑛𝑔𝑒$

𝑇𝑜𝑡𝑎𝑙	𝐴𝑠𝑠𝑒𝑡𝑠$46
 

%𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦	𝑃𝑙𝑎𝑛𝑡	𝑎𝑛𝑑	𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡$ =
𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦	𝑃𝑙𝑎𝑛𝑡	𝑎𝑛𝑑	𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡$

𝑇𝑜𝑡𝑎𝑙	𝐴𝑠𝑠𝑒𝑡$46
	 

Step 3 Missing Value 
Substitution in %Total Accruals 

If total accrual calculation in step 2 is not viable,  
%𝑇𝑜𝑡𝑎𝑙	𝐴𝑐𝑐𝑟𝑢𝑎𝑙$ = [(𝑇𝑜𝑡𝑎𝑙	𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝐴𝑠𝑠𝑒𝑡𝑠$ − 𝑇𝑜𝑡𝑎𝑙	𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝐴𝑠𝑠𝑒𝑡𝑠$46) − 
                                   (𝑇𝑜𝑡𝑎𝑙	𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦$ − 𝑇𝑜𝑡𝑎𝑙	𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦$46) + 
                                   (𝐷𝑒𝑏𝑡	𝑖𝑛	𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦$ − 𝐷𝑒𝑏𝑡	𝑖𝑛	𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦$46) − 
                                   𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛$]/𝑇𝑜𝑡𝑎𝑙	𝐴𝑠𝑠𝑒𝑡𝑠$	 

Step 4 Winsorization To ensure the robustness of the industry-year benchmark, the input variables are 
Winsorized in fiscal-year groups at the 1% and 99% levels. 

Step 5 Calculation For each two-digit SIC code and fiscal year combination, we conduct the following 
regression: 

%𝑇𝑜𝑡𝑎𝑙	𝐴𝑐𝑐𝑟𝑢𝑎𝑙2$ = 𝛽7 + 𝛽6%𝑆𝑎𝑙𝑒𝑠2$ + 𝛽!
1

𝑇𝑜𝑡𝑎𝑙	𝐴𝑠𝑠𝑒𝑡𝑠2$46
+ 

                                    𝛽8%𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦	𝑃𝑙𝑎𝑛𝑡	𝑎𝑛𝑑	𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡$ +
𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑜𝑛𝑎𝑟𝑦	𝐴𝑐𝑐𝑟𝑢𝑎𝑙2$	, 
where the residual term 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑜𝑛𝑎𝑟𝑦	𝐴𝑐𝑐𝑟𝑢𝑎𝑙2$ is taken as the discretionary accrual 
for firm i in fiscal year t. In the empirical analysis, the absolute value is adopted to 
focus the analysis only on the magnitude of the discretionary accrual without 
consideration of the direction. 
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Table A6 Average Precision and Average Information Incompleteness by Industry 

This table reports the industry averages of prediction precision and information incompleteness across the 
out-of-sample period computed with all common stocks in the three major exchanges (NYSE, AMEX, and 
NASDAQ). Panel A reports the averages for the prediction precision, while Panel B reports averages for the 
information incompleteness. The prediction precision is defined as the ratio between number of successful 
predictions and the total number of predictions. The information incompleteness is defined based on the 
aggregated predicted decile probabilities 𝐸#,$ = −∑ 𝑝())6𝑑*,$78 log% 𝑝())6𝑑*,$78

+!,#∈- . The information 
incompleteness measures the minimum number of binary questions that need to be answered to completely 
eliminate the return prediction uncertainty. In other words, it measures the shortage of information. 

Panel A: Industry Level Prediction Precision 

2-digit SIC Industry Cod
e 

Precisio
n 2-digit SIC Industry Cod

e 
Precisio
n 

Forestry 8 0.263 Apparel & Other Textile Products 23 0.154 
Membership Organizations 86 0.241 Real Estate 65 0.153 

Services, Not Elsewhere Classified 89 0.192 Rubber & Miscellaneous Plastics 
Products 30 0.152 

Metal, Mining 10 0.186 Wholesale Trade – Nondurable Goods 51 0.152 
Motion Pictures 78 0.184 Educational Services 82 0.151 
Agricultural Production – Livestock 2 0.184 Fabricated Metal Products 34 0.151 
Non-Classifiable Establishments 99 0.183 Insurance Carriers 63 0.149 
Chemical & Allied Products 28 0.179 Heavy Construction, Except Building 16 0.149 
Legal Services 81 0.178 Personal Services 72 0.148 
Coal Mining 12 0.176 General Building Contractors 15 0.148 
Oil & Gas Extraction 13 0.173 Security & Commodity Brokers 62 0.147 
Business Services 73 0.172 Transportation Equipment 37 0.147 
Local & Interurban Passenger Transit 41 0.169 Eating & Drinking Places 58 0.147 
Holding & Other Investment Offices 67 0.169 Transportation Services 47 0.147 
Instruments & Related Products 38 0.166 Auto Repair, Services, & Parking 75 0.147 
Electronic & Other Electric Equipment 36 0.166 Apparel & Accessory Stores 56 0.147 
Water Transportation 44 0.166 Furniture & Fixtures 25 0.146 

Nonmetallic Minerals, Except Fuels 14 0.166 Building Materials & Gardening 
Supplies 52 0.146 

Electric, Gas, & Sanitary Services 49 0.166 Lumber & Wood Products 24 0.146 
Communications 48 0.164 Food & Kindred Products 20 0.146 
Health Services 80 0.163 General Merchandise Stores 53 0.145 
Special Trade Contractors 17 0.163 Paper & Allied Products 26 0.144 
Miscellaneous Manufacturing 
Industries 39 0.163 Tobacco Products 21 0.144 

Engineering & Management Services 87 0.162 Petroleum & Coal Products 29 0.143 
Industrial Machinery & Equipment 35 0.161 Stone, Clay, & Glass Products 32 0.143 
Amusement & Recreation Services 79 0.161 Transportation by Air 45 0.142 
Insurance Agents, Brokers, & Service 64 0.160 Primary Metal Industries 33 0.142 
Furniture & Home furnishings Stores 57 0.158 Railroad Transportation 40 0.141 
Depository Institutions 60 0.157 Social Services 83 0.140 
Nondepository Institutions 61 0.157 Hotels & Other Lodging Places 70 0.140 
Miscellaneous Retail 59 0.157 Trucking & Warehousing 42 0.139 
Wholesale Trade – Durable Goods 50 0.157 Food Stores 54 0.139 
Pipelines, Except Natural Gas 46 0.156 Textile Mill Products 22 0.139 
Printing & Publishing 27 0.155 Automotive Dealers & Service Stations 55 0.136 
Agricultural Production – Crops 1 0.154 Leather & Leather Products 31 0.136 
Agricultural Services 7 0.154 Miscellaneous Repair Services 76 0.133 
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Table A6 (Continues) 

Panel B: Industry Level Prediction Uncertainty 

2-digit SIC Industry Cod
e 

Info. 
Incomp
. 

2-digit SIC Industry Cod
e 

Info.  
Incomp
. 

Electric, Gas, & Sanitary Services 49 3.190 Miscellaneous Manufacturing Industries 39 3.247 
Depository Institutions 60 3.196 Nondepository Institutions 61 3.247 
Tobacco Products 21 3.197 Health Services 80 3.248 
Non-Classifiable Establishments 99 3.198 Furniture & Fixtures 25 3.248 
Chemical & Allied Products 28 3.204 Industrial Machinery & Equipment 35 3.248 
Pipelines, Except Natural Gas 46 3.211 Wholesale Trade – Nondurable Goods 51 3.248 
Railroad Transportation 40 3.212 Stone, Clay, & Glass Products 32 3.249 
Forestry 8 3.213 Real Estate 65 3.249 
Membership Organizations 86 3.218 General Merchandise Stores 53 3.250 
Metal, Mining 10 3.221 Auto Repair, Services, & Parking 75 3.250 
Insurance Carriers 63 3.223 Apparel & Other Textile Products 23 3.250 

Petroleum & Coal Products 29 3.226 
Rubber & Miscellaneous Plastics 
Products 30 3.250 

Motion Pictures 78 3.231 Special Trade Contractors 17 3.251 
Business Services 73 3.231 Wholesale Trade – Durable Goods 50 3.251 
Nonmetallic Minerals, Except Fuels 14 3.232 Hotels & Other Lodging Places 70 3.251 
Insurance Agents, Brokers, & Service 64 3.232 Services, Not Elsewhere Classified 89 3.252 
Holding & Other Investment Offices 67 3.232 Miscellaneous Retail 59 3.252 
Communications 48 3.233 Agricultural Services 7 3.252 
Paper & Allied Products 26 3.233 Local & Interurban Passenger Transit 41 3.253 
Food & Kindred Products 20 3.233 Educational Services 82 3.254 
Printing & Publishing 27 3.234 Eating & Drinking Places 58 3.255 
Oil & Gas Extraction 13 3.235 Building Materials & Gardening Supplies 52 3.257 
Water Transportation 44 3.237 Lumber & Wood Products 24 3.257 
Engineering & Management Services 87 3.237 Trucking & Warehousing 42 3.257 
Instruments & Related Products 38 3.238 Social Services 83 3.260 
Personal Services 72 3.240 General Building Contractors 15 3.261 
Security & Commodity Brokers 62 3.241 Legal Services 81 3.262 
Electronic & Other Electric 
Equipment 36 3.242 Leather & Leather Products 31 3.262 
Amusement & Recreation Services 79 3.244 Heavy Construction, Except Building 16 3.263 
Fabricated Metal Products 34 3.244 Primary Metal Industries 33 3.263 
Coal Mining 12 3.244 Automotive Dealers & Service Stations 55 3.263 
Agricultural Production – Crops 1 3.245 Apparel & Accessory Stores 56 3.263 
Food Stores 54 3.245 Furniture & Home furnishings Stores 57 3.264 
Agricultural Production – Livestock 2 3.245 Transportation by Air 45 3.266 
Transportation Equipment 37 3.245 Textile Mill Products 22 3.268 
Transportation Services 47 3.246 Miscellaneous Repair Services 76 3.285 
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Table A7 Performance of Portfolios Including Stocks with Top 50% Market Capitalization 

This table reports the economic performance of the portfolios using only the stocks with above median 
capitalization constructed based on the aggregated predictions from the individual classifiers. The statistics 
are calculated based on the out-of-sample period covering 198301:202112. The decile portfolios are sorted 
based on the predicted deciles monthly, which are the deciles with the highest predicted probabilities. The 
column “market” reports the performance of the buy-and-hold strategy using all common stocks in the three 
major exchanges. The cumulative returns are in decimal unit representing gross returns in the sample period. 
𝛼′𝑠 are for the corresponding factor models, e.g., CAPM or Fama-French 3 Factor model. The 𝑡 statistics for the 
𝛼′𝑠 are Newey-West	𝑡 statistics of lag 6. The performance statistics are based on excess return adjusted with 
risk-free rate, i.e., 30-day US treasury bill. We report annualized Sharpe ratios. Turnover is defined as the 
average total percentage of holding changes in absolute value. Max drawdown is defined as the max difference 
between current price and the most recent price peak in percentage across all months in our sample period. 
Panel A reports the equal-weight portfolio performance, while Panel B reports the value-weight portfolio 
performance. A robustness check of the portfolio performance using only the stocks above the median market 
capitalization of the market is included in the Appendix Table A7. 

Panel A: Equal-Weight Decile Portfolios 
Statistic Market lo 2 3 4 5 6 7 8 9 hi hi-lo 
Mean Excess Return 0.009 -0.002 0.003 0.004 0.004 0.004 0.008 0.010 0.012 0.015 0.014 0.013 
Cumulative Return 24.199 -0.962 0.129 1.628 2.438 3.488 27.891 77.556 135.289 310.412 120.312 341.751 
CAPM Alpha 0.000 -0.016 -0.008 -0.005 -0.004 -0.002 0.002 0.003 0.004 0.004 0.002 0.015 
 0.049 -5.166 -4.224 -2.636 -2.137 -1.277 1.270 2.360 1.975 2.296 0.721 5.920 
FF3F Alpha 0.000 -0.013 -0.007 -0.005 -0.005 -0.003 0.001 0.003 0.003 0.005 0.003 0.014 
 0.340 -7.339 -6.773 -3.821 -4.378 -2.668 1.172 4.022 3.492 4.662 2.031 7.075 
FF5F Alpha 0.002 -0.007 -0.006 -0.005 -0.006 -0.005 -0.001 0.001 0.001 0.005 0.006 0.010 
 1.513 -4.781 -5.426 -3.625 -4.683 -3.618 -1.114 2.063 1.959 4.758 3.551 5.727 
Standard Deviation 0.058 0.098 0.073 0.062 0.057 0.043 0.040 0.045 0.055 0.067 0.085 0.036 
Sharpe Ratio 0.515 -0.073 0.143 0.227 0.263 0.334 0.694 0.807 0.766 0.758 0.569 1.267 
Turnover 0.105 0.134 0.100 0.082 0.071 0.059 0.052 0.058 0.073 0.092 0.120 0.127 
Max Drawdown -0.607 -0.936 -0.649 -0.637 -0.667 -0.667 -0.450 -0.480 -0.541 -0.558 -0.659 -0.430 
Mean N 5342 283 252 66 99 126 692 407 387 202 158 441 
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Table A7 (Continues) 

Panel B: Value-Weight Decile Portfolios 
Statistic Market lo 2 3 4 5 6 7 8 9 hi hi-lo 
Mean Excess Return 0.008 0.000 0.003 0.007 0.005 0.005 0.007 0.009 0.009 0.015 0.013 0.011 
Cumulative Return 19.733 -0.934 -0.019 6.261 3.084 5.432 17.497 36.998 39.210 236.704 66.740 91.874 
CAPM Alpha 0.000 -0.015 -0.009 -0.003 -0.004 -0.002 0.001 0.002 0.001 0.004 0.001 0.012 
 -1.674 -4.644 -4.058 -1.659 -1.785 -0.931 0.576 2.753 0.660 1.707 0.183 4.795 
FF3F Alpha 0.000 -0.012 -0.007 -0.003 -0.005 -0.003 0.000 0.001 0.001 0.005 0.003 0.012 
 -1.738 -5.239 -4.304 -1.488 -2.939 -2.134 -0.304 2.336 0.944 2.931 1.102 5.328 
FF5F Alpha 0.000 -0.005 -0.004 -0.001 -0.006 -0.004 -0.002 0.001 0.001 0.006 0.007 0.009 
 -1.003 -2.612 -2.745 -0.710 -3.643 -3.208 -3.622 1.070 0.646 3.888 2.658 3.624 
Standard Deviation 0.045 0.102 0.079 0.072 0.060 0.048 0.041 0.044 0.054 0.074 0.093 0.050 
Sharpe Ratio 0.583 -0.015 0.140 0.333 0.281 0.374 0.600 0.689 0.602 0.681 0.498 0.753 
Turnover 0.057 0.125 0.095 0.068 0.064 0.050 0.047 0.048 0.064 0.087 0.113 0.119 
Max Drawdown -0.527 -0.960 -0.829 -0.753 -0.721 -0.637 -0.502 -0.512 -0.617 -0.559 -0.723 -0.510 
Mean N 5342 283 252 66 99 126 692 407 387 202 158 441 

 


