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Abstract
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1 Introduction

The endeavor to accurately predict future stock price movements has perennially been at

the heart of financial economics. This pursuit, foundational to both trading strategies and

risk management, is rendered intricate by the multifaceted and dynamic nature of financial

markets. Traditional models, which predominantly rely on numerical time-series data, often

grapple with the market’s evolving patterns, its pronounced volatility, and its susceptibility

to a myriad of external influences. Such challenges underscore the pressing need for a more

innovative and adaptable approach to forecasting.

Financial markets are not mere static entities; they pulsate with life, evolving and reacting

to a plethora of stimuli. This dynamism is reminiscent of frames in a cinematic reel, where

each frame, though a standalone snapshot, is intrinsically linked to its predecessor, painting

a broader narrative. Similarly, the stock market of today is a reflection of its yesterdays,

and to forecast its tomorrows, one must grasp this sequential relationship. It is here that

our research introduces a paradigm shift. By harnessing the power of Variational Recurrent

Neural Networks (VRNNs), we aim to predict stock price trends, translating daily price

changes into graphical representations and training the model to forecast future trajectories.

To elucidate the significance of this approach, consider the dot-com bubble of the late

1990s and early 2000s. A static snapshot during the bubble’s zenith would portray tech

stocks as the golden geese of the era. However, a more "animated" perspective reveals a

sequence: the mid-1990s rise of the internet, the late 1990s’ exponential growth in tech

valuations, the bubble’s peak around 2000, and its eventual burst in the early 2000s. This

sequence, akin to movie frames, provides a holistic understanding of the buildup, climax,

and denouement of the bubble.

In finance, researchers have been using machine learning to predict asset returns and

measure risk premiums. Such studies include those conducted by Feng, He, and Polson,

2018, Chen, Pelger, and Zhu, 2023, and Gu, Kelly, and Xiu, 2020. However, many of these

studies have relied on traditional feed-forward neural networks that only consider features of
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fixed dimensions and do not consider the longer-term sequential dependency of asset prices

and returns. There is a limitation because asset returns are known to follow both short-term

and long-term patterns, such as return momentum and reversal patterns. To address this

issue, it is important to model the sequential dependence of asset returns when designing

strategies that rely on such data. Our study contributes to this literature by exploring the

mechanisms and performance of various deep sequence modeling techniques, specifically in

estimating the risk premiums of U.S. equities. The same analogy applies to weather forecasts,

using frames instead of single graphs (Bi et al., 2023)

In this way, frames form a recurrence (or sequence) in the model that is also a character-

istic part of financial markets. That is why predicting financial markets with their dynamics

as frames is better than comparing two static graphs (for example, a graph with observed

and predicted prices).

Notably, our predicting future graphs are related to predicting prices instead of returns,

and our model is very good at predicting prices characterized by high autocorrelation. Figure

2 shows that the next frame prediction task relies on high autocorrelation. Moves of pixels

must be strongly autocorrelated to predict the future path, and prices demonstrate the

desired characteristics for this model. Predicting prices in financial markets has its distinct

advantages and drawbacks. The primary advantage is the inherent autocorrelation present

in prices, which is a statistical characteristic meaning that a variable’s current value is highly

influenced by its past values.

Regarding stock prices, today’s price is generally close to yesterday’s price, and this trend

tends to continue. This autocorrelation creates a certain level of predictability that predictive

models can capitalize on, making them potentially more accurate. Moreover, price prediction

can provide direct and tangible information to investors and traders who base their decisions

on price levels and changes.

On the other hand, predicting prices also has some challenges. One of the main challenges

is that price series are generally non-stationary, meaning their statistical properties, such as
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mean and variance, can change over time. This can make the task of modeling and predicting

prices more complex. Furthermore, prices are absolute values that can be influenced by

factors such as inflation or company size, which can cause distortions and make predictions

less reliable. In contrast, returns, which represent the relative changes in price, are often

preferred in financial modeling for their desirable statistical properties. They are typically

stationary and normally distributed, making them easier to model and predict. However,

return series often exhibit little to no autocorrelation, making them less predictable and

harder to forecast accurately.

Predicting prices in the context of our research is significant for many reasons. Firstly,

our model’s design is deeply rooted in the conceptualization of prices as visual data. By

mapping prices onto video frames, our methodology leverages the graphical trajectory of

price movements to make future predictions. Hence, focusing on prices is integral to fully

capitalizing on the model’s predictive potential and the autocorrelation inherent in price

data.

Secondly, by predicting prices directly, we capture the direction and magnitude of po-

tential changes. This level of detail can give investors a more granular understanding of

future market conditions, facilitating more precise investment decisions. Thirdly, price pre-

diction allows our research to contribute to an important financial forecasting conversation

– whether price or return prediction yields more valuable insights. By providing reliable

price predictions, we offer fresh evidence of the utility of price-based models, pushing the

boundaries of existing financial forecasting methodologies.

Finally, price predictions can be particularly useful in certain investment contexts. For

example, options pricing heavily relies on future price forecasts. Likewise, stop-loss orders,

limit orders, and similar trading strategies are contingent on price thresholds.

We have calculated our Sharpe ratio (SR) from weekly returns to be 2.94 for equally

weighted portfolios and 2.47 for value-weighted portfolios.1 In comparison, Jiang, Kelly, and
1Please note that we are currently in the process of tabulating our results, and they will be available for

review in one month.
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Xiu, 2020 (2020) report a 1.74 value-weighted SR for all decile stocks, while we achieve a 2.47

Sharpe ratio for S&P500 quintiles. It is important to note that their sample includes publicly

traded stocks from NYSE, Nasdaq, and Amex, whereas ours only includes the constituents

of the S&P500. We will explain the rationale behind the decision to use this sample next.

Jiang et al., 2020 show higher SR for equally weighted portfolios. However, we are

cautious about the practicality of this strategy. Equally weighting a portfolio means investing

the same amount of money in each stock, regardless of its market value or size. While this

approach can lead to high theoretical returns, it can be challenging to implement in practice,

particularly with frequent (weekly) rebalancing. There are two primary challenges associated

with this strategy. The first is transaction costs, which can significantly erode returns in

practice. The second is liquidity constraints, as smaller companies (included in ’all stocks’

in Jiang et al., 2020) may have lower liquidity, making buying or selling the required number

of shares difficult.

In contrast, our value-weighted strategy weights investments by the market value of the

companies. This approach favors larger, more liquid companies, which can be more easily

traded. Therefore, the higher SR achieved by our strategy using S&P500 stocks (large-cap,

highly liquid stocks) for quintiles is likely more practical and "investable" in the real world.

Our study introduces a state-of-the-art approach to predicting future US stock prices

as video sequences using Variational Recurrent Neural Networks (VRNNs). We apply our

model to generate dynamic future frames forecasting stock prices based on a rich data set

from the Center for Research in Security Prices (CRSP) for companies listed on the S&P500

index between 1993 and 2021. This methodology harnesses the synergistic strengths of

Recurrent Neural Networks (RNNs), Variational Autoencoders (VAEs), and Convolutional

Neural Networks (CNNs) to capture both temporal and spatial relationships between price

movements.

Complexity in financial market dynamics often cannot be sufficiently captured through

simple numerical forecasts. Our methodology’s ability to predict more than mere price
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movements - such as volatility trends and trading volumes - presents a much more holistic

view of the market’s future. This depth of insight is invaluable in strategic decision-making

processes, aiding investors to manage risk and potential returns better.

As the financial industry becomes increasingly data-driven, investment in advanced ma-

chine learning capabilities like VRNNs is not merely a cost but an essential strategic asset.

These technologies offer a competitive advantage through enhanced forecasting capabilities,

enabling firms to anticipate market movements more accurately and act decisively.

Our results demonstrate the VRNN model’s capacity to accurately forecast the trajectory

of market data changes for the next ten trading days. These forecasts cover closing prices,

maximum and minimum prices, the direction of a 20-day moving average, and volumes. This

multi-dimensional output offers an enriched prediction of market trends and arms investors

with a holistic understanding of the anticipated market performance, empowering them to

strategize their investment decisions effectively.

In the intricate world of financial markets, understanding stock price reactions to com-

pany announcements is paramount. To deepen our understanding about our approach, we

compare ours with the traditional prediction models that employ an expanded window ap-

proach, meticulously considering all past stock reactions to predict future movements. For

instance, when predicting a stock’s reaction on the 30th day, these models would analyze

the stock’s behavior from the 1st day to the 29th day. While comprehensive, this method

treats each day’s reaction as an isolated event, potentially overlooking the evolving nature

of stock reactions over time.

Imagine a tech company that frequently makes product announcements. Over several

months, they unveil new products, update existing ones, and announce various business

developments. On the 32nd day, the company drops a bombshell: a merger with another

tech giant. Traditional models, with their expanded window approach, might struggle here.

They’d look at all past reactions, but without a prior merger announcement as reference,

the prediction could be based merely on the average of all past reactions.
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Enter the Variational Recurrent Neural Network (VRNN) approach, which maintains a

dynamic "memory" of stock reactions. This memory captures evolving patterns, such as

the stock’s growing positive response to partnership announcements. When faced with the

unexpected merger news, the VRNN, informed by its memory, might recognize the merger

as a mega-partnership of sorts. Drawing parallels with the stock’s strengthening reactions

to past partnership announcements, the VRNN could predict a more robust reaction to the

merger news.

As another example, Consider a tech stock that, over a span of 10 days, reacts to a series

of product announcements with the following percentage changes: [1%, 2%, -1%, 0.5%, 1.5%,

2%, -1.5%, 0.5%, 1.5%, 2.5%]. A discernible pattern emerges: modest gains often precede

a slight dip. Using a traditional expanded window approach, to predict the stock’s reaction

on the 11th day, the model would analyze all previous percentage changes, treating each as

an independent data point. The prediction might be a simple average, suggesting a modest

gain.

However, a VRNN approach, with its dynamic memory, would recognize the sequence’s

rhythm. It would "remember" the stock’s tendency to dip after a series of gains. Given

that the last three days before the 11th showed gains, the VRNN might predict a dip for

the 11th day, aligning more closely with the stock’s observed behavior. This illustrative

example underscores the VRNN’s potential to capture intricate temporal patterns in stock

price reactions, offering a nuanced lens for financial forecasting.

In this research, we delve into the VRNN’s potential to capture the sequential and evolv-

ing nature of stock price reactions, offering a fresh perspective in the ever-complex realm of

financial forecasting.

In short, comparaing to the other approaches, VRNN stands out in the realm of financial

forecasting due to several distinctive features. First and foremost among these is its efficiency.

Unlike traditional models that become increasingly computationally intensive as they process

more data, VRNNs handle each new data point in the context of a continuously updated
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hidden state, ensuring streamlined operations even as data sequences grow. Second, this

hidden state, often referred to as the model’s "dynamic memory," captures the intricate

temporal patterns in data, allowing VRNNs to recognize and respond to evolving trends

in stock price movements. Third, instead of equally weigh each return, VRNNs inherently

prioritize recent data, giving more weight to short-term patterns and relationships. This

ensures that the model remains adaptive and responsive to the latest market dynamics. In

essence, the VRNN’s blend of efficiency, dynamic memory, and emphasis on recent data

positions it as a formidable tool for capturing the nuanced rhythms of financial markets.

Our study’s contribution to financial economics is multifold. Not only does it introduce

a novel VRNN-based methodology for predicting future stock prices, but it also paves the

way for the application of advanced machine learning techniques in financial forecasting.

The multi-dimensional output of our model aids in making informed investment decisions

by offering a rich and nuanced understanding of market trends.

Numerous studies have explored the influence of images, graphs, and colors on investment

decisions and stock prices. However, examining graphs and machine learning and their

impact on stock prices is still in its early stages. The first paper to utilize machine learning

on images was conducted by Obaid and Pukthuanthong (2022). They use CNN to convert

images into a sentiment score and demonstrated that photo sentiment is more predictive

than text sentiment.

Jiang et al. (2020) is the first paper that uses graphs to predict returns; this, naturally

their concept is most closest to ours, though they are not the same. To illustrate, they

transform historical price and trading data into two-dimensional images and use CNN to

analyze graphs and predict prices based on patterns. We differ in several aspects from their

approach.

Our approach involves utilizing VRNNs to predict stock market price movements. We em-

phasize visual representations in video frames while utilizing image-based machine-learning

models. Our VRNN models combine RNNs, VAEs, and CNNs to handle complex sequential
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data efficiently. We focus on predicting price movements as sequential frames or a "video,"

instead of using CNN, which only uses static, individual 2D images for prediction as they

do. CNN cannot capture the sequential dependencies inherent in financial time series data.

Our predictions are based on the S&P 500 index constituents and prioritize short-term

forecasts and high liquidity. In comparison, they utilize data from all companies listed on

NYSE, AMEX, and NASDAQ. We do not specify a specific frequency for rebalancing but

note that their highest Sharpe ratio is achieved with a five-day rebalancing. Conversely,

results for 20-day and 60-day rebalancing are considerably lower.

Our methodology is ideal for investors who frequently rebalance their portfolios and

engage actively with their investments. This approach suits those in trading roles that

require higher turnover or investors seeking more active involvement. The methodology

employed by Jiang et al., 2020 is more suitable for investors interested in medium to long-

term strategies as they analyze static 2D images that represent longer-term trends. However,

this approach may not provide insights for short-term, quick decision-making.

Regarding liquidity, we focus on S&P 500 index companies, ensuring high liquidity and

lower transaction costs. This is particularly advantageous for institutional investors who

need to make significant transactions without impacting the market price significantly. On

the other hand, their study covers all companies listed on NYSE, AMEX, and NASDAQ,

providing broader market coverage and potentially diversifying investment options. However,

this comes at the cost of lower liquidity and potentially higher transaction costs, from small

stocks.

Our model excels in forecasting accuracy by predicting the direction and scale of price

changes, closing prices, maximum and minimum prices, the direction of a 20-day moving

average, and volumes. This level of detail provides investors with a comprehensive under-

standing of future stock performance. The video frames generated by our model depict stock

price movements over time, creating a dynamic and informative time-series-like visual out-

put. Our approach gives practitioners a flexibility to consider short-term and medium-term
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investment strategies based on predicted movements for the next ten trading days.

In comparison, their model predicts the probability of returns to go up and down, lacking

the detailed information and accuracy of our dynamic, time-inclusive approach. However,

their simpler prediction may be easier for practitioners to interpret and apply, making it

more suited for investors focused on a binary decision-making process (buy/sell) based on

the predicted price change direction. Their approach may also benefit those implementing

high-frequency trading strategies, where the price movement direction is more important

than the magnitude of change.

Finally, the main difference lies in the output. They rely on images to forecast the

probability of returns increasing or decreasing. Their approach involves arranging portfolios

according to the return data image from the previous day and evaluating the returns of these

portfolios in the following period. Our study, on the other hand, utilizes images to predict

future prices up to 10 days in advance.

While both studies use graphical representations in their methodology, the key difference

lies in the type of financial variable being predicted (returns vs. prices) and how images are

used in the prediction. Jiang et al. used past images of returns to sort portfolios. In contrast,

we generate future images of price trends and then decoding these images to predict future

prices.

Predicting future prices has the advantage of high autocorrelation, a property not found in

returns. This allows your model to make more accurate and detailed predictions potentially.

This could have significant implications for market participants interested in short-term

price movements. It’s a fundamentally different approach with its unique contributions and

applications.

It’s worth noting that, like all predictive algorithms, our model has certain limitations.

However, despite these limitations, it offers a detailed and multi-dimensional view of future

market dynamics. The interpretation of the output may be more complex than simpler binary

predictions, but our approach is highly effective. While some other methods, such as Jiang
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et al. (2020)’s methodology which utilizes static 2D images, may be less computationally

intensive, our results are focused on large and highly liquid stocks. While our study may not

be directly applicable to smaller stocks, the high predictability threshold of these large stocks

suggests that our model may perform well with smaller stocks as well. Further research can

explore this possibility, but it would require significant computing power. Overall, our model

is a reliable and effective tool for predicting future market dynamics.

Despite these constraints, we firmly believe that our work heralds a significant step

forward in financial forecasting. It underscores the potential of innovative machine learning

methodologies in generating nuanced, visually intuitive, and comprehensive market forecasts,

thus adding a robust tool to the arsenal of investors and financial analysts. Our study is a

foundation for future research in this exciting and promising arena of graph-based financial

predictions.

2 Animated Market Data

The advent of machine learning in finance has opened a gateway for sophisticated and efficient

forecasting methods. However, the complexity of financial markets and the multiplicity of

factors affecting them raise significant challenges for these methods. Here, we present a novel

approach to address this complexity by leveraging animated market data. While stock price

changes are typically viewed statically, they exhibit a dynamic nature, akin to frames in a

movie, where each frame is closely related to its predecessor. In the same vein, current stock

market figures reflect their past performances. Thus, forecasting future price movements

hinges significantly on understanding this sequential relationship, which can be effectively

captured through animation.
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2.1 Multivariate Graphical Data Input

The incredible information capacity of visuals serves as the bedrock of our research. Single

graphs can convey a multitude of information simultaneously, making interpretation more

accessible. Firstly, a single chart can depict an entire data series related to a specific variable,

such as a stock’s historical prices over a specified period. Secondly, one chart can encapsulate

multiple time-series data simultaneously, like overlaying stock prices, moving averages, and

trading volumes. Thirdly, in addition to portraying price data on the day of observation,

graphs can present information about their variability, broadening the data spectrum while

maintaining clarity. Lastly, the ability to use different colors in graphics makes it easier to

discern differences between observation points for each series.

In our study, we harness the power of visuals to capture past closing prices, maximum and

minimum prices, 20-day moving averages, and trading volume. We independently generate

each image for full control over its content and the optimal arrangement of all elements in

the chart. Jiang, Kelly, and Xiu (2020) inspire our chart construction. To our knowledge,

we are the first study to generate future graphs.2 Instead of processing the image to predict

the return direction, we incorporate several modifications to enhance the image clarity for

machine learning algorithms that will process them later. Figure 1 visualizes the comparison

between graphs from this study and those used by Jiang et al. (2020).The left graph proposed

by us displays 20 days of historical daily observations and predicts the market data for up to

10 days in the future. Meanwhile, the graph on the right, constructed by Jiang et al., 2020,

also uses 20 historical daily observations but predicts the direction of the price for 5, 20, or

60 days. It is important to note that their output is the probability of return direction, while

our predictions are prices up to 10 days ahead.

Primarily, closing prices are the most critical elements in charts, whether the predictive

task is forecasting returns, price changes, or prices themselves. Hence, we increase the

visibility of prices in the chart by modifying the typical OHLC (Open, High, Low, Close)
2Jiang et al., 2020predict the probability of stocks to go up and down.
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chart, where the closing price is merely a small dot, to a line chart connecting closing prices.

This line running through the entire chart is easily perceptible to the human eye and machine

learning algorithms.

Secondly, we omit to present opening prices, which do not provide significant predictive

value, and in the situation of drawing closing prices as a line, are challenging to overlay.

Thirdly, we color-code each of the utilized series. The closing prices are white, the trading

volume is light grey, the high-low (HL) bars are darker grey, and the moving average is

the darkest grey against a black background. This color differentiation makes it easier

to distinguish, for example, between closing prices and the moving average. Importantly,

closing prices are always overlaid last, so they remain visible irrespective of other data. The

following section discusses further modifications in chart creation that tailor our images to

the main objective of our study - capturing market dynamics through image animation.

2.2 Market Dynamics as Video Frames

Stock price changes on day t are conditional on the market information from the n preceding

days, much like the content of the last video frame depends on the information in the previous

frames. Figure 2 illustrates the analogy between consecutive video frames in the popular

testing database "Bair Push Dataset" (Ebert, Finn, Lee, & Levine, 2017) used to evaluate

the predictive abilities of machine learning models dedicated to forecasting subsequent video

frames and video frames generated by us to predict future stock prices. The changes in

the content of each frame are minor, as most of the information repeats in each of them.

The difference between the frames induces movement, which becomes apparent when frames

are composited into a single image and displayed sequentially over defined time intervals.

In the case of frames demonstrating the direction of stock prices, the content change only

involves two observations. With each subsequent frame, a new observation appears on the

right side of the chart, and the oldest observation disappears. In this manner, consecutive

frames demonstrate the dynamics of market price changes.
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Figure 3 presents the base chart used to create a video for a single observation. We

then divide this chart into frames, each being an image of 64x64 pixels in size, which is the

standard dimension in video analysis algorithms. The same figure demonstrates how the

base chart is divided into frames, where the first few frames form the context for movement

creation, and the subsequent frames become the subject of the forecast.

Three elements of the base chart’s construction become essential in using it to create a

video for forecasting future stock prices. Firstly, the chart must have an appropriate width.

Our single frame with a width of 64 pixels must demonstrate data for specific days, where

the number of pixels for each day must be equal. We dedicate four pixels for a single daily

observation. This size ensures a smooth line formation connecting individual observations

for closing prices and moving averages. The lines would be very jagged with two pixels,

three pixels are indivisible by 64, and a larger pixel count than four reduces the range of

information on a single frame without providing noticeable benefits in chart smoothness. In

this case, a chart with a width of 64 pixels accommodates 16 observations.

When each observation is conditioned on the n preceding ones, the frames must differ by

one observation. Hence, in the context of the base chart, expanding the number of displayed

observations from 16 to 17 means expanding the chart from 64 to 68 pixels. However, Jiang

et al. (2020) demonstrates that 20-day market data predicts future stock returns. To extend

the range of input data for the model and to build a sufficient number of input frames with

movement context, we use the first five video frames as input data for the model (observed

period). In this approach, the first frame provides information within the scope of the first

16 observations (16 observations x four pixels = 64 pixels). The subsequent four frames

extend the number of observations to 20 and increase the base chart width to 80 pixels (16

observations x 4 pixels + four observations x four pixels = 80 pixels).

When modeling financial data, each observation is conditioned on the preceding ones,

meaning that each frame in our representation must differ by one observation. In the context

of our base chart, expanding the number of displayed observations from 16 to 17 corresponds
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to expanding the chart from 64 to 68 pixels, as each observation is represented by four pixels.

However, Jiang et al. (2020) demonstrate that a 20-day market data window is predictive

of future stock returns. To align with this finding and extend the range of input data for

our model, we construct our input frames with a movement context in mind.

In our approach, we use the first five video frames as input data for the model during

the observed period. The first frame provides information within the scope of the first 16

observations, translating to 64 pixels (16 observations multiplied by four pixels each).

The subsequent four frames do not add four complete sets of 16 observations; instead,

they add one observation per frame, extending the total number of observations to 20.

This increases the base chart width to 80 pixels, calculated as the original 16 observations

multiplied by four pixels each, plus the additional four observations multiplied by four pixels

each (16 observations x 4 pixels + 4 observations x 4 pixels = 80 pixels).

This methodology allows us to capture the temporal dynamics of the market, representing

the data in a way that reflects both the sequential nature of financial observations and the

insights from existing research on market prediction

Our model’s design includes a sequence of frames, where each frame represents a specific

set of observations (e.g., price observations). The first frame encapsulates the initial 16

observations, represented by 64 pixels. Four subsequent frames each add one observation,

extending the total to 80 pixels. These frames correspond to observed data. Additional

predictive frames are used for forecasting future observations, with each forecast requiring

four pixels on the base chart. The model forecasts ten frames, expanding the base chart to a

total width of 120 pixels. This structure allows for both the representation of observed data

and sequential forecasting.

The second critical aspect of creating the base chart is the process of input data scaling.

First, to eliminate the impact of price jumps associated with stock operations such as splits,

we recalculate all chart elements based on the daily rate of returns, which are appropriately

corrected by the CRSP (Jiang et al., 2020). Second, how the base chart elements are scaled
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significantly influences the potential look-ahead bias in the forecasting process.

In our model, we implement a method of chart scaling that considers both price and

volume data, based solely on observations from a specific period. This scaling method

involves mapping the maximum and minimum prices and the top-level volume to specific

pixel levels on the chart.

For illustration, let’s assume that the scaling method sets the minimum price at a pixel

level of 42 and the maximum at a pixel level of six.3 If the maximum price during the

observed period only reaches a pixel level of 12 instead of six, the algorithm can learn from

this pattern. Since the chart must touch both the 42 and six-pixel points in each observation,

the algorithm can infer that there should be a price increase to the six-pixel level in the

forecast period.

Figure 4 in the document illustrates this scaling method, showing how the data is scaled

on the base graph.4

The top-right chart is the pure input used to create frames, with dotted lines on the

other three graphs marking the extreme values for prices (upper part of the chart) or volume

(bottom part).

The potential issue is if we incorporate data from the forecast segment of the chart for

scaling purposes, the algorithm could swiftly identify specific patterns. For instance, if the

price maximum were to be within the forecast period instead of the observed period, the

chart in the observed period would not reach the value typically necessary to achieve the

maximum. Such a phenomenon would indicate to the algorithm that the price in the forecast

period should attain the maximum value, thereby leading to the look-ahead bias.
3In this context, lower pixel levels correspond to higher prices, and higher pixel levels correspond to

lower prices. This mapping allows the algorithm to represent price movements within a defined pixel range,
facilitating the learning and prediction process.

4In our model, we represent financial data as a sequence of frames, with each observation mapped to a
specific pixel level on a chart. To facilitate our analysis, we have chosen to map higher prices to lower pixel
levels and lower prices to higher pixel levels. This choice allows us to represent price movements within a
defined range, aligning with our specific modeling and visualization approach. It is important to note that
this mapping is not a conventional practice and is specific to our research methodology. The relationship
between pixel levels and price levels is an arbitrary choice that serves our analytical needs, and it is not
related to the conventional understanding of pixel resolution in digital images.
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In our model, we scale both prices and volumes based on the extremes observed in the

input period. This scaling method has an important implication: it can lead to situations

where prices or volumes in the forecast period exceed the acceptable range of the chart.

To illustrate, consider the chart area for prices, which is represented between the first

and 48th pixel. Within this range, the extremes for prices in the observed period are set at

the 6th and 42nd pixels.56 This means that the price can rise or fall by six pixels relative

to the extreme in the input period before it reaches its maximum or minimum permissible

level on the chart.

However, we have implemented a safeguard to handle situations where the data exceeds

this range. If a price or volume does exceed the acceptable range, we represent it by drawing

a single pixel at the appropriate extreme on the chart. This approach ensures that the data

remains within the defined bounds of the chart, while still allowing some room for additional

changes.

Figure 4, specifically the bottom-right panel, illustrates this situation. It shows how the

scaling process accommodates extremes in the data, ensuring that the representation remains

consistent and meaningful, even when unexpected fluctuations occur.

By scaling prices and volumes according to the observed extremes and implementing

this safeguard, we create a flexible yet controlled representation of the data. This approach

supports our analysis while accommodating the dynamic and sometimes unpredictable nature
5We choose to represent the highest and lowest stock prices using the 6th and 42nd pixel levels, respec-

tively. This choice is based on a careful analysis of the observed range of prices in our dataset, where we
map the historical extremes to these specific pixel values. By doing so, we ensure a standardized represen-
tation that accommodates the inherent variability of stock prices while maintaining a consistent scale across
different stocks and time periods. The choice of these particular pixel levels is not arbitrary but reflects the
underlying distribution of prices in our data. It allows us to translate pixel levels back into real-world price
levels by using the same scaling factors. This approach supports our analysis by providing a controlled yet
flexible way to represent price movements, and it can be adapted to different datasets by recalibrating the
scaling factors based on the observed price range.

6To determine the range of prices, first we can identify the minimum and maximum prices in the dataset.
For example, let’s say the minimum price is $10, and the maximum price is $100. Next, we determine the
range of pixels. In our case, the 6th pixel represents the maximum price, and the 42nd pixel represents the
minimum price. Third, we can calculate the scaling factor by Dividing the range of prices by the range of
pixels. In this example, the scaling factor would be ($100 - $10)/(6 - 42) = $2.27 per pixel. Lastly, we can
convert pixel levels to prices by multiplying the pixel levels by the scaling factor and add the minimum price.
In this example, the 6th pixel would correspond to $100, and the 42nd pixel would correspond to $10.
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of financial markets.

In summary, creating an image as a carrier of information about market states is an

exact task where individual elements can significantly impact how the machine learning

algorithm learns the dynamics of image changes. In the next section, we demonstrate the

requirements behind the machine learning algorithm capable of understanding the market

dynamics visualized as a video.

3 Model Selection

This section focuses on the Variational Recurrent Neural Networks (VRNN) model we em-

ploy for stock price forecasting. This model is pivotal in our research and serves several

simultaneous functions we will elaborate on. This discourse aims to delineate the elements

constituting the VRNN model and elucidate why a cohesive understanding of this model is

imperative for accomplishing our research task.

Our model needs to fulfill several critical functions concurrently. Firstly, it must analyze

data in a time series context. Secondly, it must analyze the image, correctly identifying

correlations among its elements. Thirdly, it must be capable of capturing highly uncer-

tain correlations between the stock price at time t and market data from the preceding n

observation days.

A vital aspect of our model is its capacity to forecast stock price levels rather than returns.

Stock prices exhibit high autocorrelation, a highly desired phenomenon when forecasting

subsequent video frames. Consequently, our model deviates from traditional financial models

centered around forecasting returns and directly forecasts stock price levels.

To capture the high levels of uncertainty associated with the factors influencing stock price

fluctuations, our model incorporates several advanced concepts known in artificial intelligence

research. This section succinctly delineates the main tasks and capabilities of each applied

algorithm.
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At the outset of this section, a crucial point worth mentioning is that we delve into the

task of video prediction, a specific manifestation of self-supervision where generative models

learn to predict future frames in a video (Devlin, Chang, Lee, & Toutanova, 2018; Gidaris,

Singh, & Komodakis, 2018). By undertaking this approach, we aim to establish a firm

ground in the predictive modeling landscape.

3.1 Convolutional Neural Network

Convolutional Neural Networks (CNN) form our model’s backbone of image analysis, provid-

ing an effective means to identify dependencies among individual pixels on a chart. CNNs

leverage a mathematical operation known as convolution to scan and process input data,

allowing the model to identify and extract significant features from an image.

The fundamental idea behind CNNs involves using multiple layers of convolution, apply-

ing a set of learnable filters to the raw pixel data of an image. The convolution operation

for a single 2D filter F of size a × a applied to a part of the image I is defined as:

Cij =
a−1∑
m=0

a−1∑
n=0

Ii+m,j+nFm,n (1)

where Ci,j is the convolved feature (or feature map), Ii+m,j+n represents a portion of the image

I, with the same size as the filter, that pixels’ are located at i+m and j + n. Finally, Fm,n

represents the elements of the filer F with m and n indicating the location of the elements

within the filter. This process is repeated across all the image regions, effectively sliding the

filter across the image, enabling the network to learn spatial hierarchies or patterns.

3.2 Recurrent Neural Networks

Stock price forecasting at time t based on market data from the previous n observations

inherently entails time series analysis. Predicting sequences is a natural task for Recurrent

Neural Networks (RNNs), a class of artificial neural networks designed to recognize patterns
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in data sequences.

RNNs can uniquely retain information from prior inputs in their hidden states, thereby

modeling temporal dependencies. A basic form of an RNN can be represented as:

ht = σ (Whhht−1 +Wxhxt + bh) (2)

where ht is the hidden state at time t, xt is the input at time t, Wxh , and Whh are weights,

bh is a bias, and σ is an activation function.

While models based on the combination of CNNs with a recurrent model, such as the

Convolutional LSTM Network (Shi et al., 2015), are applicable for analyzing sequences of

image frames, traditional RNNs fall short when accounting for forecast uncertainty due to

their deterministic nature. Their only source of variability resides in the conditional output

probability model, which is insufficient for capturing the randomness intrinsic to the data

(Babaeizadeh, Finn, Erhan, Campbell, & Levine, 2017).

As demonstrated in Figure 5, typical probabilistic models, after applying the uncertainty,

generate an average or "shadow" of various potential scenarios when forecasting movements

for phenomena laden with high uncertainty. While indicating the most probable trajectory,

these predictions are imprecise and thus inadequate for forecasting stock prices. This short-

coming necessitates the deployment of algorithms capable of predicting phenomena with

high levels of uncertainty. The following sections discuss the implementation of such models,

focusing on integrating Variational Autoencoders into RNN structures.

3.3 Variational Autoencoders

To enhance the efficacy of image series analysis, employing data compression of the im-

ages using autoencoders is practical. An autoencoder is a neural network architecture that

consists of two main components: an encoder and a decoder. The encoder compresses

high-dimensional image data into a compact space known as a bottleneck, and the decoder
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reconstructs the original data from this compressed representation (refer to Figure 6).

The compression is achieved by minimizing the reconstruction loss, which is the difference

between the original input image and the output image generated by the decoder. A simple

autoencoder utilizes fully connected layers of a neural network, but autoencoder layers can

also encompass Convolutional Neural Network (CNN) cells, facilitating the compression of

image or sound data.

However, traditional autoencoders map input data to a single vector, rendering them

deterministic. This can be a limitation when modeling data with inherent variability. Non-

deterministic models that map data onto a distribution are employed to address this. These

models, known as Variational Autoencoders (VAEs), utilize two vectors—one for the mean

and another for the standard deviation of the feature distribution (Kingma & Welling, 2013;

Rezende, Mohamed, & Wierstra, 2014).

VAEs are a potent example of deep generational probabilistic graphical models adept

at capturing input data variability and generating a distribution that summarizes this vari-

ability (refer to Figure 7). They offer a harmonious blend of flexible non-linear mapping

between latent random states, observed outputs, and effective approximate inference. This

combination enables VAEs to model complex multimodal distributions, which are beneficial

when the underlying true data distribution comprises multimodal conditional distributions.

The underlying principle of a VAE is rooted in Bayesian inference and can be expressed

as follows:

qϕ(z | x) = N
(
z | µϕ(x), σ

2
ϕ(x)I

)
(3)

where qϕ(z | x) is the approximate posterior (encoder), ϕ are the parameters of the encoder,

z is the latent variable, and x is the observed data. The parameters µϕ(x) and σ2
ϕ(x) of the

Gaussian distribution are outputs of the encoder. The variational part of the VAE concerns

minimizing the divergence between the true and approximate posterior.

Thanks to these modifications, VAEs can non-deterministically compress data and esti-

mate various future states for each sample of their latent variables. The properties of VAEs
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will be leveraged in the next section, which discusses the incorporation of VAEs into the

architecture of the Variational Recurrent Neural Network (VRNN).

3.4 Variational Recurrent Neural Network

The architecture of the Variational Recurrent Neural Network (VRNN) combines the tempo-

ral modeling capabilities of RNNs with the probabilistic latent variable modeling capabilities

of VAEs, thereby enabling the creation of a powerful predictive model for complex and un-

certain processes (Chung et al., 2015). At its core, the VRNN model embeds a VAE in each

of the recurrent cells of the RNN.

This design allows the VRNN to handle the high uncertainty inherent in video frame

prediction tasks. The variational component of the VRNN enables the generation of multiple

plausible trajectories for object movement depicted in video frames, as opposed to a single

deterministic trajectory.

VRNN is formulated with an architecture that closely intertwines the hidden states of

the RNN (ht) with the latent variables of the VAE (zt) as shown by the following equations:

The prior:

pθ (zt | ht−1) = N
(
zt | µ(p)

θ (ht−1) , σ
(p)
θ (ht−1)

)
(4)

The approximate posterior:

qϕ (zt | xt, ht−1) = N
(
zt | µ(q)

ϕ (xt, ht−1) , σ
(q)
ϕ (xt, ht−1)

)
(5)

The observation model:

pθ (xt | ht) = N
(
xt | µ(x)

θ (ht) , σ
(x)
θ (ht)

)
(6)

The hidden state update:

ht = fθ (ht−1, zt, xt) (7)
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In the equations above, xt denotes the input at time t, zt is the latent variable, and ht is the

hidden state. The parameters θ and ϕ represent the network parameters for the generative

and inference model, respectively. The function fθ corresponds to the deterministic transition

function of the RNN, which is usually a non-linear function such as a Long Short-Term

Memory (LSTM) (Hochreiter & Schmidhuber, 1997) or Gated Recurrent Unit (GRU) (Cho

et al., 2014).

Figure 8 presents a single cell of the VRNN model encapsulated within a dark red rect-

angle. This VRNN cell operates on the principles of a recurrent network, transforming the

prior hidden state ht−1 into the current hidden state ht. This ht can be used in the following

cell, establishing a temporal link across cells.

Inside the VRNN cell is a VAE that operates on the combined data of the prior hidden

state ht−1 and the new frame xt. It compresses this high-dimensional information using an

encoder and a decoder that are equipped with CNN layers, facilitating pattern recognition

in the input images.

In the VAE, the data is condensed into a latent vector zt through a process based on two

key elements: the mean vector (µ) and the variance vector (σ). This process can be seen in

the Equation 5, where the input data xt and the prior hidden state ht−1 are used to estimate

the true distribution of the latent variable zt.

The decoder part of the VAE relates to the Equation 4 and Equation 6, generating new

frame data xt from the hidden state ht, and computing the distribution of the actual data.

The deviation between this generated data and the actual data is termed the reconstruction

error, which is minimized during training.

Finally, the VRNN cell uses a recursive function that integrates the information from

the prior hidden state ht−1, the current latent state zt, and the new frame xt. This process

is represented by the Equation 7, which updates the hidden state ht based on the previous

hidden state, the current latent state, and the new input frame.

In conclusion, the diagram exhibits how the VRNN model leverages the strengths of
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RNNs, VAEs, and CNNs to efficiently handle complex, sequential data. It illustrates how

each component - prior, approximate posterior, observation model, and hidden state update

- contributes to the overall functioning of the model.

In conclusion, we demonstrate the connection between the RNN and VAE in the VRNN

architecture, presenting a comprehensive understanding of how the non-deterministic nature

of the VAE is integrated into the RNN, thereby enhancing its capacity to handle high-

uncertainty scenarios. The next section demonstrates the application of VRNN to finance.

4 Generating Future US Stock Prices as Video

In this chapter, we delve into our methodology, starting with a description of the data used

in the study. Then we explain the procedure for training the VRNN model for generating

future frames. Further, we clarify how to read and interpret the data on the generated video

frames. Finally, we present our results, beginning with the probability of determining the

right direction of price changes, to showcase our model’s economic applications in portfolio

construction.

4.1 Data

In our research, we utilize daily data from the Center for Research in Security Prices (CRSP)

for constituents of the S&P500 index. Historical compositions of companies included in the

index are acquired from Refinitiv. Our research sample pertains to the period from 1993

to 2021. Market data concerning the highest and lowest prices are available in CRSP since

June 1992.

We focus on S&P500 index companies for several crucial reasons. First, our research

involves forecasting daily stock price changes in the short term. Utilizing short-term fore-

casts to construct an investment portfolio necessitates frequent rebalancing and concurrent

sufficient liquidity of analyzed companies. Concentrating on the largest U.S. companies in
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the S&P 500 ensures high liquidity and low transaction costs. This makes the results of our

research applicable to investors with high assets. See Table 1 for the number of firms in our

sample in each year.

Second, a well-documented phenomenon is the decidedly lower predictability of the largest

companies stock prices.7 Hence, by concentrating on the largest stocks, we demonstrate that

our strategy achieves solid results amongst companies for which predicting the direction of

price changes is most challenging.

Finally, the machine learning task of the next frame forecasting requires significant com-

putational resources. A smaller number of companies in the analysis considerably accelerates

calculations, making our study feasible even with commonly available computing equipment.

4.2 Training VRNN

Our task is to forecast the trajectory of market data changes for the next ten trading days,

using a method that involves both motion context and video frames. As mentioned in Sec-

tion 2, we utilize five ’context frames,’ which define the input data and signal the direction of

object movement found on individual frames. These context frames encapsulate information

from 20 trading days of historical market data, approximating one month (from t-19 to t),

and predict 10 trading days of future market data that approximate two weeks (from t+1 to

t+10). These changes encompass closing prices, maximum and minimum prices, the direc-

tion of a 20-day moving average, and volumes. By utilizing data other than closing prices,

we aim to enhance the forecast capabilities related to future changes in the closing price.

To train the model, we generate a total of 15 frames, comprising five context frames and

ten forecast frames. This allows the model to independently learn the relationships between

the context and forecast frames.
7Jiang et al. (2020) in their research use all companies listed on NYSE, AMEX, and NASDAQ. They show

that the out-of-sample Sharpe ratio of strategies based on H-L decile spread portfolios sorted by image-based
return is highest with a five-day rebalancing. Results for 20-day and 60-day rebalancing are significantly
lower, and a Sharpe ratio above one is achievable only for equally-weighted strategies. Value-weighted
strategies reach a Sharpe ratio above one only with a weekly (five-day) rebalancing.
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Our model’s design involves a base chart with a 64x120 pixel resolution, representing

different dimensions or features of the market data, such as price and volume. We divide

this chart into 15 parts, corresponding to five context frames (capturing 20 trading days of

historical data) and ten forecast frames (predicting the next ten trading days). The choice

of 15 parts and the specific resolution aligns with our model’s architecture and the nature

of the data.

We employ a sliding window method with a 64x64 resolution, moving the window by

four pixels at a time across the base chart. This technique allows us to analyze sequential

segments of the data, capturing temporal patterns and relationships.

Each observation in our model corresponds to the last trading day of a calendar week.

While our data includes daily closing prices, we may have chosen this weekly reference point

to align with other data sources, reduce noise, or capture specific market patterns relevant

to our study.

Generative models, such as VRNNs, utilize specific measures to determine the degree of fit

between the generated image and the actual one. One such measure is the "loss," often called

the reconstruction loss (loss_rec). This loss quantifies the discrepancy between the actual

data and the reconstructed data generated by the model. The smaller the reconstruction loss,

the more closely the generated data matches the actual data, indicating a better-performing

model.

The second measure, "prior loss" (loss_prior), deals with regularizing the latent variables

in the VRNN. In simple terms, it ensures that the distribution of the latent variables follows

a specific pattern, often a standard Gaussian distribution. By minimizing the prior loss, we

encourage the latent variables to conform to this pattern, which can improve the model’s

generative abilities.

Finally, the total "loss" of the VRNN model is usually a combination of these two com-

ponents, the reconstruction, and prior losses. By minimizing these two components jointly,

we aim to train a model that can effectively generate data similar to the training set while
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maintaining a regular structure in the latent space. Therefore, t his loss function plays a

crucial role in training our VRNN model and, subsequently, the quality of the predictions it

generates.

Our study divides the data into a training period (1992-2000) and a testing period (2001-

2021). We train the model once on the training data, setting aside several hundred of the

last observations from the training set as a validation sample to measure the model’s training

level. Based on the total "loss" in the validation sample and the early stopping approach,

we determine the number of epochs necessary to train the model.

All of our calculations are conducted using Python. We use PyTorch package and per-

form demanding computations at the Foundry and Hellbender high-power computing envi-

ronments at the University of Missouri.

4.3 Reading the Market Data from Video Frames

The output of our model consists of predicted frames. It is crucial to accurately read the

data from these frames to conduct accuracy tests and apply these forecasts to portfolio

construction. In this process, we examine each generated frame and read pixels from the

relevant columns of the images, which correspond to the stock prices. We only search for

white pixels, as closing prices are denoted in white. For instance, on the first of the generated

frames, the first column of pixels on the right contains information about the forecasted

closing price on day t+1.

Subsequently, on the second of the generated frames, the fifth column of pixels from the

right contains data for the same observation as the previous frame from day t+1 but also

includes an additional forecast in the first column from the right with the closing price from

day t+2. Proceeding this manner, we arrive at the tenth generated frame, which contains

forecasted prices for days t+1 to t+10. We average all readings for the same days to eliminate

potential noise or vagueness in the forecasts. The information read on the pixel’s position

forecasting the price on day t+n can be compared with the reading of information about the
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pixel on day t. This comparison provides the simplest yet effective way to verify whether

the model has predicted a price increase, stability, or decrease for a specified number of

days ahead. However, not only the direction of changes can be significant, but also its scale.

Therefore, forecasts differing by a larger (or smaller) number of pixels can be more (or less)

important.

Finally, the number of days n utilized in forecasting weekly price changes is also impor-

tant. The maximum number of session days in a single week is five. Nevertheless, some

weeks have fewer days. For this purpose, for each day t, representing the last session date

in a given calendar week, we count the number of session days in the following calendar

week. This calculation determines the number of session days in the next week. It serves as

a reference point for choosing the appropriate length of the forecast from the data generated

by the VRNN.

4.4 Accuracy of Forecasted Price Direction

Table 2 serves as a critical component of our analysis, providing a detailed breakdown of the

model’s predictive performance across different horizons. The table is divided into two main

sections: the top part, which includes the unclear rate, and the bottom part, which excludes

it. Both sections are further categorized into "Correction," "Uncorrection," and "Unclear."

Correction represents the accuracy of the model’s predictions, where the model correctly

predicted the market direction. For example, the correction rate for direction1 is 53.33%,

indicating a moderate level of accuracy for one-day-ahead predictions. Uncorrection includes

instances where the model’s predictions were incorrect. The uncorrection rates range from

26.67% for direction1 to 33.33% for direction10, reflecting the model’s errors. Unclear en-

compasses situations where the model’s predictions were ambiguous or inconclusive. The

unclear rates range from 20% for direction1 to a significant jump to 40% for direction10.

"Unclear" could arise from the model’s inability to discern a clear pattern or trend in the

data, possibly due to noise, volatility, or other complex factors. The top part of the table,
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including the unclear rate, provides a comprehensive view of the model’s performance, con-

sidering all possible outcomes. It helps us understand not only where the model is correct

or incorrect but also where it struggles to make a definitive prediction.

The bottom part of the table, excluding the unclear rate, offers a more focused view of

the model’s performance by considering only the clear predictions. It allows us to assess the

model’s accuracy when it is confident in its predictions.

The results in Table 2 reveal some key insights. The correct and incorrect rates are similar

for all across the length of the predicted period in days. Our correction rate is comparable

with that of Jiang et al., 2020.

While the correction rates for shorter horizons are promising, the decrease in accuracy

and increase in unclear predictions for longer horizons highlight areas for improvement. The

results call for further investigation into the model’s architecture, data preprocessing, and

feature engineering to enhance its ability to generalize across different prediction horizons.

In conclusion, Table 2 serves as a valuable tool in assessing the model’s predictive ca-

pabilities, strengths, and weaknesses. By presenting both the top and bottom parts of the

table, we offer a nuanced view of the model’s performance, considering both clear and unclear

predictions. The insights gained from this analysis will guide our ongoing efforts to refine

the model, with the ultimate goal of achieving robust and reliable predictions for various

market scenarios.

There are some limitations of this table. We do not report whether there is an asymmetric

effect between negative and positive prediction. The correction presents the same direction

of prediction for the actual and predicted value. Second, we do not consider the magnitude

of the difference between actual and prediction. Although the model presents the correction

that is greater than the incorrect one, the margin is narrow between 12% to 16%.
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4.5 Portfolio Performance

We construct value-weighted (VW) and equal-weighted (EW) portfolios for the five quin-

tiles. The returns and Sharpe ratios increase across quintiles. The long-short portfolios of our

strategy (VRM) generate the best performance. See Table 3. We compare our performance

with that of non-machine learning strategies including momentum (MOM), short-term re-

versal (ST_REV) and long-term reversal (LT_REV). Our Sharpe ratio and Calmar ratios

for both equal-weighted and value-weighted portfolios are higher than those of non-machine

learning based trading strategies. VRM has 2.47 and 2.94 for value-weighted and equal-

weighted portfolios; while, MOM has SR of 0.05 and 0.01, ST_REV of 0.24 and 0.51, and

LT_REV of 0.05 and 0.30.

5 Any title 5

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristi-

que, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus

adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae,

placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan

nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem.

Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim.

Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvi-

nar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu

massa.

6 Any title 6

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt

ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea
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dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi.

Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac

pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus

quis tortor vitae risus porta vehicula.

7 Conclusion

In conclusion, this research presents a novel approach to the prediction of stock price

movements by using advanced machine learning techniques, particularly Variational Recur-

rent Neural Networks (VRNNs). By transforming daily price changes into visual repre-

sentations and forecasting future trajectories, we’ve shown that our model delivers superior

performance, especially for large, less predictable stocks. This approach holds significant im-

plications for portfolio construction, particularly regarding liquidity and rebalancing strate-

gies.

Our research demonstrates the potential of machine learning in augmenting the under-

standing of financial market dynamics. However, it also acknowledges the limitations of

this approach, including its computationally intensive nature and potential specificity to the

market conditions of the training dataset.

Moving forward, it’s clear that the fusion of machine learning and finance research can

lead to significant advancements in understanding and predicting market trends. As technol-

ogy evolves and computational resources become more accessible, adopting and refining such

methods in finance are likely to continue and provide further insights into market dynamics.

This study’s results indicate promising future research directions, particularly in exploring

the intricacies of market behavior using innovative computational methods.

We hope that this study sparks further interest and research in this field, enabling more

sophisticated models that can better capture the intricacies of financial markets and provide

investors with superior tools for navigating the complexities of the market.
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Figure 1: Graphs comparison

In this figure, we show a comparison between two graphs. The graph on the left is the base graph that we
use to create frames for animations that, with 20 days historical daily observation predict up to 10 days
of future market data. On the right, we show a graph prepared by Jiang, Kelly, and Xiu (2020) where 20
historical daily observations are used to predict the price direction in 5, 20, or 60 days.

Figure 2: Sample video frames

This figure presents sample frames of four videos. Each video consists of ten frames. Two upper rows demon-
strate frames from video database BAIR Robot Pushing frequently used by researchers to test algorithms
dedicated to next frame forecasting task (Ebert, Finn, Lee, & Levine, 2017). Two bottom rows show frames
from graphs created in this research.
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Figure 3: Frames of a Video from a Base Chart

This figure demonstrates the transformation of a base chart into frames. The base chart (at the top of
the figure) has dimension 64x120 pixels. It is separated into 15 frames (at the bottom of the figure) with
dimension 64x64 pixels. The first frame and the last are demonstrated in the front of others.
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Figure 4: The data scaling procedure

This figure demonstrates how we scale the data on the base graph. We present four base graphs that are used
to form video frames. The top-right chart is a pure input to create frames. On the other three graphs, we
add, for information purposes, dotted lines that demonstrate the borders forming extreme values for prices
(upper part of the chart) or volume (bottom part).

Figure 5: Generative Outcome of Deterministic vs. Probabilistic Model

The top part demonstrates frames of deterministic model where a box moves in a random direction. The
bottom part, shows a probabilistic outcome. By introducting the uncertainty the generated objects are
blurry and averaged. Figure inspired by Babaeizadeh, Finn, Erhan, Campbell, and Levine (2017).
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Figure 6: Autoencoder

In autoencoder the input data is compressed with encoder to bottleneck and then it is decompressed with
decoder. In the training process the algorithm’s task it to minimize the comparison error between the original
input and the decoded output.

Figure 7: Variational Autoencoder (VAE)

Variational autoencoder is a type of autoencoder where encoder takes input and output two vectors, one
with the means and the other with variance. Next, mean and variance vector are used to create a sampled
vector. The decoder reconstruct input from the sampled vector.
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Figure 8: Variational Recurrent Neural Network (VRNN)

The figure illustrates a single Variational Recurrent Neural Network (VRNN) cell. In VRNN each cell con-
tains a Variational Autoencoder (VAE) with Convolutional Neural Network (CNN) layers, which condenses
high-dimensional data into a low-dimensional latent vector. The prior hidden state (ht−1), current latent
state (zt), and new input frame (xt) are processed through a recursive function to yield the current hidden
state (ht).
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Table 1: Descriptive Statistics
The table presents an overview of the research sample (SAMPLE) vs. S&P500 Index (S&P500) in yearly
periods. For stocks in the research sample, it demonstrates equal-weigh average weekly returns (RetEw),
value-weight average weekly returns (RetVw), total market capitalization in millions of dollars (Mcap), and
number of stocks (No). The data for S&P Index covers market capitalization in millions of dollars (Mcap).

Sample S&P500

year RetEw RetVw Mcap No Mcap
2001 0.18 0.13 8,737 444 10,731
2002 -0.32 -0.28 7,459 438 9,143
2003 0.70 0.59 7,322 436 8,900
2004 0.35 0.29 8,551 439 10,522
2005 0.18 0.19 9,084 441 11,060
2006 0.31 0.38 9,747 449 11,849
2007 0.03 0.20 10,871 451 13,141
2008 -0.81 -0.50 8,924 457 10,666
2009 0.92 0.75 7,096 449 8,295
2010 0.43 0.38 8,578 442 10,288
2011 0.07 0.18 9,514 443 11,554
2012 0.28 0.32 10,248 438 12,445
2013 0.67 0.64 11,999 433 14,664
2014 0.31 0.37 14,033 430 17,197
2015 -0.04 0.08 14,772 439 18,217
2016 0.31 0.32 14,699 437 18,197
2017 0.38 0.47 16,938 443 21,027
2018 -0.19 -0.05 18,699 438 23,293
2019 0.54 0.64 19,511 431 24,315
2020 0.43 0.61 21,820 440 26,622
2021 0.51 0.58 28,733 440 36,176

Table 2: Accuracy of Predicted Price Direction
This table reports the out-of-sample accuracy of price change direction depending on the length of the
predicted period in days. We define the positive direction as not smaller than zero and the negative direction
as less than zero. The correct predictions state that the model predicts positive (negative) price change when
the price change is positive (negative), and incorrect demonstrate that the model predicts positive (negative)
and it is negative (positive). The unclear observations denote graphs where the pixels displaying closing prices
are unavailable. We calculate accuracies by dividing the number of correct (incorrect) observations by the
total number of clear observations. The share of unclear observations is estimated as the number of unclear
observations to the total number of samples.

1 2 3 4 5 6 7 8 9 10
Correct 0.58 0.57 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.57
Incorrect 0.42 0.43 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.43
Unclear 0.04 0.05 0.05 0.06 0.07 0.07 0.07 0.07 0.07 0.29
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Table 3: Portfolio Performance
The table compares performance of value-weight (Panel A) and equal-weight (Panel B) quintile portfolios. Animated Stock Market portfolio (ASM) is
sorted on out-of-sample predicted pixel change for the next week. Momentum (MOM), short term reversal (ST_REV), and LT_REV portfolios are
sorted on prior monthly returns 12-2, 1-0, and 60-13, respectively. Panels report annual return (Ret), annualized standard devation (SD), maximum
drawdown (MD), Sharpe ratio (SR), and Calmar Ratio (CR).

PANEL A: Value-Weight
ASM MOM ST_REV LT_REV

Ret SD MD SR CR Ret SD MD SR CR Ret SD MD SR CR Ret SD MD SR CR
Low 0.03 0.17 0.74 0.15 0.04 0.10 0.31 0.79 0.31 0.12 0.07 0.18 0.62 0.40 0.12 0.10 0.22 0.53 0.44 0.19
2 0.11 0.16 0.51 0.68 0.22 0.11 0.19 0.57 0.59 0.20 0.09 0.15 0.47 0.61 0.20 0.10 0.17 0.53 0.62 0.19
3 0.16 0.16 0.39 1.00 0.42 0.11 0.15 0.47 0.74 0.24 0.10 0.15 0.45 0.70 0.23 0.09 0.15 0.48 0.64 0.20
4 0.19 0.17 0.40 1.11 0.47 0.11 0.14 0.41 0.75 0.26 0.12 0.18 0.50 0.66 0.24 0.11 0.14 0.44 0.83 0.26
High 0.31 0.16 0.25 1.87 1.23 0.11 0.17 0.51 0.66 0.22 0.12 0.26 0.75 0.45 0.15 0.11 0.17 0.54 0.63 0.20
H-L 0.28 0.11 0.15 2.47 1.84 0.01 0.27 0.70 0.05 0.02 0.04 0.18 0.49 0.24 0.09 0.01 0.15 0.56 0.05 0.01

PANEL B: Equal-Weight
Low -0.00 0.19 0.80 -0.02 -0.01 0.15 0.30 0.69 0.50 0.22 0.10 0.21 0.62 0.47 0.16 0.17 0.26 0.64 0.66 0.27
2 0.08 0.19 0.63 0.43 0.13 0.15 0.20 0.60 0.72 0.24 0.13 0.18 0.56 0.72 0.23 0.14 0.19 0.57 0.72 0.24
3 0.13 0.19 0.60 0.66 0.21 0.14 0.17 0.52 0.83 0.28 0.14 0.18 0.57 0.75 0.24 0.14 0.17 0.51 0.80 0.27
4 0.17 0.19 0.50 0.87 0.34 0.15 0.16 0.47 0.90 0.31 0.15 0.20 0.63 0.71 0.23 0.13 0.17 0.54 0.76 0.24
High 0.30 0.19 0.40 1.59 0.75 0.15 0.19 0.56 0.79 0.27 0.17 0.28 0.63 0.61 0.27 0.13 0.20 0.57 0.65 0.23
H-L 0.30 0.10 0.13 2.94 2.31 0.00 0.23 0.71 0.01 0.00 0.08 0.15 0.20 0.51 0.38 -0.04 0.14 0.73 -0.30 -0.06
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Table 4: VRNN Portfolios vs. Transactions Costs
The table presents impact of transactions costs on the strategy performance and the average monthly
turnover. Panel A shows the performance of value-weight portfolios and Panel B of the equal-weight. Panels
report annual return (Ret), Sharpe ratio (SR), Calmar Ratio (CR), and average monthly turnover (Turnover).

PANEL A: Value-Weight
0.00% 0.01% 0.02% 0.03% 0.04% 0.05% 0.06% 0.07% 0.08% 0.09% 0.10%

Ret 0.28 0.27 0.25 0.24 0.23 0.21 0.20 0.18 0.17 0.16 0.14
SR 2.49 2.36 2.24 2.12 1.99 1.87 1.75 1.63 1.50 1.38 1.26
CR 1.85 1.74 1.64 1.53 1.43 1.33 1.23 1.14 1.04 0.95 0.86
Turnover 1156%

PANEL B: Equal-Weight
Ret 0.30 0.29 0.27 0.26 0.24 0.23 0.22 0.20 0.19 0.18 0.16
SR 2.95 2.82 2.68 2.55 2.42 2.28 2.15 2.01 1.88 1.75 1.61
CR 2.32 2.19 2.06 1.94 1.82 1.70 1.58 1.47 1.35 1.25 1.14
Turnover 1121%

Table 5: Alphas from the VRNN based strategy
This table presents alpha from regressing the equal-weithed and value-weighted returns of the long-short
strategies sorted by the out-of-sample predicted pixel change for the next week. The independent variables
are the factors from CAPM, FF3, FF5, FF6, DHS, and all combined. ***, **, and * present one, five and
ten percent significance, respectively.

Equal-Weight Value-Weight

Model Coefficient t-stat Coefficient t-stat
CAPM 0.0058*** 13.28 0.0054*** 11.75
FF3 0.0058*** 13.26 0.0058*** 13.26
FF5 0.0058*** 13.41 0.0056*** 12.04
FF6 0.0058*** 13.45 0.0056*** 12.10
Q4 0.0059*** 13.35 0.0055*** 11.87
DHS 0.0059*** 13.58 0.0056*** 12.20
All+STR +LTR 0.0059*** 13.49 0.0053*** 11.03
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Table 6: VRNN on stock characteristics
This table present the Fama-MacBeth cross-sectional regression. The dependent variable is predicted pixels
change in one week horizon based on our VRNN model. The independent variables are lagged and col-
lected from Gu, Kelly, and Xiu, 2020. Mov_avg_Ndays is moving average of daily returns over N days.
Mov_avg_Ndays are lagged by one week, the monthly variables such as momentum (mom) variables are
lagged by one month and others variables are lagged annually consistent with the original paper. The stan-
dard errors are Newey-West adjusted and reported in the parentheses. ***, **, and * present one, five and
ten percent significance, respectively. Errors reported in parentheses

(1) (2) (3)

Dep. Variable Predicted Pixels Predicted Pixels Predicted Pixels
Intercept 13.804*** 10.665*** 10.682***

(0.150) (0.640) (0.609)
mov_avg_20days 0.871*** 0.886***

(0.064) (0.079)
mov_avg_5days -0.921*** -0.886***

(0.067) (0.080)
mov_avg_0days 0.070*** 0.017

(0.017) (0.014)
BETA -0.305** -0.245*

(0.134) (0.127)
baspread 99.181*** 97.664***

(7.955) (7.747)
dolvol 0.024 0.034

(0.070) (0.067)
mom12m 0.109 0.082

(0.206) (0.186)
mom1m -2.337*** -2.167***

(0.487) (0.459)
mom36m -0.320*** -0.314***

(0.082) (0.077)
mom6m 0.497** 0.479**

(0.246) (0.233)
mve 0.101 0.084

(0.072) (0.068)
pricedelay 0.509*** 0.446***

(0.155) (0.148)
retvol -44.393*** -42.648***

(6.137) (5.937)
zerotrade 1.757e+07*** 1.779e+07***

(5.437e+06) (5.269e+06)
No. Observations 396,544 396,544
R-squared -0.1077 -2.343e+07 -2.402e+07

41



Table 7: Future returns on VRNN and stock characteristics
This table present the Fama-MacBeth cross-sectional regression. The dependent variable is weekly return.
The independent variables are predicted pixels based on our VRNN model, Mov_avg_Ndays and lagged
characteristics collected from Gu, Kelly, and Xiu, 2020. Mov_avg_Ndays is moving average of daily returns
over N days. The Mov_avg_Ndays are lagged by one week, monthly variables such as momentum (mom)
variables are lagged by one month and others variables are lagged annually consistent with the original paper.
The standard errors are Newey-West adjusted and reported in the parentheses. ***, **, and * present one,
five and ten percent significance, respectively.

(1) (2) (3) (4)

Dep. Variable WeekRet WeekRet WeekRet WeekRet

Intercept -0.1309 0.2687*** 0.7701*** 0.4744*
(0.0903) (0.0810) (0.2327) (0.2467)

pred_week_lag 0.0274*** 0.0272***
(0.0022) (0.0021)

mov_av_est_20 -0.0180 0.0043 -0.0184
(0.0205) (0.0128) (0.0128)

mov_av_est_5 -0.0033 -0.0143 0.0082
(0.0135) (0.0092) (0.0090)

mov_av_est_60 0.0189* 0.0102* 0.0099*
(0.0098) (0.0060) (0.0057)

BETA -0.0463 -0.0393
(0.0594) (0.0591)

baspread 0.0322 -2.4084
(2.9797) (2.9694)

dolvol 0.0176 0.0129
(0.0235) (0.0230)

mom12m 0.0434 0.0291
(0.0702) (0.0755)

mom1m -0.2518 -0.2014
(0.1726) (0.1764)

mom36m 0.0503 0.0566*
(0.0323) (0.0337)

mom6m -0.0627 -0.0840
(0.0885) (0.0955)

mve -0.0556** -0.0537**
(0.0271) (0.0272)

pricedelay -0.0832 -0.0900
(0.0541) (0.0555)

retvol -0.1970 1.0002
(2.2137) (2.2077)

zerotrade 1.242e+06 2.793e+05
(2.067e+06) (2.094e+06)

No. Observations 396544 396544 396544 396544
R-squared 0.0037 -0.0022 -3.218e+05 -1.628e+04
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