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Abstract

We apply advanced natural language processing to develop a dynamic dictionary of artificial

intelligence (AI). Using this dictionary, we construct a real-time index of AI attention from more

than 3,000,000 New York Times articles. Firms having high exposures to AI have higher returns

one month ahead and lower returns five to seven months ahead, suggesting initial overreactions

to AI news and subsequent corrections. The connection between AI exposures and future returns

is concentrated among non-big stocks, indicating that small AI stocks are more difficult to value.

A long-short AI exposure portfolio among non-big stocks generates significant annual alphas of

3% against benchmark multifactor models.
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1 Introduction

The remarkable advancements in artificial intelligence (AI), epitomized by generative technolo-

gies such as ChatGPT, have profoundly reshaped the dynamics of society and businesses. The

media consistently emphasizes AI-related developments, sparking investor interest in companies

specializing in AI products and services. This increased focus has generated an urgent demand to

understand the ramifications of AI on financial markets. Although prior research has delved into

the implications of AI replacing human roles in areas like systematic risk (Zhang 2019), innovation

(Babina et al. 2021), and capital structure (Bates, Du, and Wang 2020), the existing literature has

yet to examine the correlation between the extent of AI relatedness at the firm level and its impact

on stock returns. Our study pioneers this essential inquiry, bridging the gap in the current body

of research and providing critical insights into the financial consequences of AI relatedness.

Our study addresses this critical gap in the literature by developing a novel measure of firm-level

“AIness” that captures the extent of AI integration within a company. This measure is a valuable

tool for investors and market participants to understand better the potential impact of AI adoption

on a firm’s performance and the broader financial landscape. Our research provides valuable insights

for investment strategies, corporate decision-making, and risk management by demonstrating that

our AIness metric can predict stock returns. Furthermore, our findings contribute to the ongoing

discourse on the role of AI in shaping the future of industries and the global economy.

In our study, we extract AI narratives from news sources, building upon the ideas presented

by Shiller (2017, 2020), which propose that certain narratives can spread, evolve, influence human

behavior, and ultimately impact economic outcomes. We identify AI as a powerful narrative that

has the potential to shape financial markets. Our measure is forward-looking as the news content

captures the market’s attention and the likelihood the market anticipates on particular subjects

(Gentzkow and Shapiro 2010; Mullainathan and Shleifer 2005). Our AI metric is a proxy for the

market’s focus on AI-related developments. By examining AI narratives from as early as the 1970s,

we establish that the attention paid to AI has had significant implications for financial markets.

To create a real-time index of public attention to AI, we analyze the frequency of AI-related

keywords in 3,000,000 New York Times (NYT) articles from 1974 to 2020. We use the state-of-

the-art word-embedding method, word2vec (Mikolov et al. 2013), to represent each word in the
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NYT articles as a numeric vector. We then identify words with high similarity scores to artificial

intelligence-related keywords, forming our AI dictionary.

We employ a rolling estimation scheme to ensure that our AI dictionary and index are available

in real-time. For every month t, we use the last ten years of NYT articles (including the current

month) to estimate the word2vec model and generate the AI dictionary for that specific month t.

Subsequently, we compute the frequencies of terms in this AI dictionary to construct our AI index

score using the NYT articles available in the following month t + 1. This approach ensures that

our AI dictionary is updated at the end of each month, and our AI attention score is available in

real time. We continue this rolling estimation scheme until the end of the sample period.

Our estimation strategy fulfills two essential objectives. Firstly, by computing our AI score from

the NYT articles using only available real-time information, we effectively address the look-ahead

bias, a critical issue in any test for return predictions. Secondly, our dynamic, monthly-updated AI

dictionary accommodates the evolving semantics related to artificial intelligence over time. The AI-

related concepts prevalent in the 1980s and 1990s differ considerably from contemporary discussions

about AI. Consequently, utilizing a static AI dictionary may fail to accurately capture AI-related

terms from earlier periods, leading to an underestimation of public attention to AI at the time.

Our estimation strategy overcomes this challenge by employing real-time news data to construct a

time-varying AI dictionary, ensuring the automatic discovery of relevant concepts and terminology.

After constructing the real-time daily AI attention score from the NYT articles, we estimate

firm exposures to AI by regressing daily stock returns onto our daily AI score in a rolling window

after controlling for common sources of stock return movements proxied by the six pricing factors

from Fama and French (2018).1 We refer to the stock beta concerning our AI score as the measure

of “AIness.” Our AIness measure reflects the public’s perception of a firm’s AI adoption: when

investors consider a company an AI-driven firm, its stock price exhibits a high comovement with

the AI index, indicating a high AIness score.

We document that AIness has been more volatile over the recent decade and is higher for firms

in Business Equipment, Chemicals, Durables, Manufacturing, and Utilities than those in Energy,

Health, Nondurables, and Shopping. The Health industry has the lowest AIness. We also find that

1As shown in Section 4, our AI beta maintains its predictive power of future returns even after we control for
101 stock predictors from Green, Hand, and Zhang (2017). Therefore, the choice of pricing factors to include when
constructing our AI betas does not impact our main results.
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AIness is higher for firms having bigger market equity, higher value ratios, higher market betas,

higher profits, higher growth, and lower return volatility. Finally, AIness is not related to firm age.

Our approach to capturing firm-level AIness is distinct from measures constructed from firm

fundamentals, as found in studies by Zolas et al. (2020), Babina et al. (2022), Lui, Lee, and Ngai

(2022), Cao et al. (2020), Alsheibani, Cheung, and Messom (2018), Holmström (2022), Johnk,

Weibert, and Wyrtki (2021), and Bäck et al. (2022). Our measure encapsulates the public’s per-

ception of the extent of AI usage within a company, including retail and institutional investors. This

perception encompasses AI’s role in product development pipelines, the automation of operations,

and the communication of AI-related plans to investors.

Our primary empirical inquiry investigates the impact of firm-level AIness on future stock re-

turns. We address this question by conducting standard return predictive regressions. Our findings

reveal that firms with high AIness exhibit higher returns one month ahead. This result remains

robust after controlling for 101 stock predictors from Green, Hand, and Zhang (2017). Firm charac-

teristics are known to be highly correlated, as demonstrated by Rajan and Zingales (1995), Fazzari

et al. (1988), Peters and Taylor (2017), and Alti (2003). Both Green, Hand, and Zhang (2017) and

Chib et al. (2022) indicate that including more characteristics leads to a purer and more distinct

characteristic representation. By incorporating the 101 characteristics examined in (Green, Hand,

and Zhang 2017), we demonstrate that the predictive power of AIness persists. This outcome im-

plies that AIness plays a unique role, not subsumed by other firm characteristics. Furthermore, our

results remain consistent when using industry-adjusted returns, suggesting that specific industries

do not drive the connection between firm AIness and future stock returns.

We further investigate the role of firm size in explaining the impact of AIness. We document

that the predictive power of AIness is concentrated among stocks having a market value below

the NYSE 50th percentile break point, suggesting that AI news influences small firms more than

large firms. Investigating the impact of AIness on long-horizon stock returns, we find that high

AIness predicts higher returns one month ahead and lower returns five to seven months ahead.

This suggests that investors initially overreact to AI news and subsequently correct their initial

beliefs. Once again, this pattern of initial overreactions and subsequent corrections is concentrated

among small stocks. Our findings indicate that investors find it more challenging to value small

AI stocks, resulting in the return predictability pattern. Big established firms do not need to take
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costly actions to promote the use of AI in their firms, and the information is already priced in their

stock prices. Smaller firms, however, take costly actions of using news and social media, and other

outlets to credibly inform investors about the adoption of AI in their product pipeline and business

strategy.

In addition to returns, AIness also positively predicts sales growth and returns on equity over

the next 12 months. Again, this prediction is concentrated among small stocks. This indicates

that investors overreact to AI exposures of small firms because they anticipate higher growth and

stronger financial performance. This overreaction leads to higher stock returns one month ahead

and lower returns five to seven months ahead when the market corrects.

There could be several reasons why AIness only predicts stock returns and financial performance

for small firms but not large ones. One possible explanation is that small firms may have more

flexibility and agility to adapt to and implement new technologies like AI compared to large firms,

which may have established and rigid structures. As a result, small firms may leverage AI more

efficiently and effectively to gain a competitive advantage, which could lead to higher stock returns.

Additionally, small firms may have a higher potential for growth, which could be more easily realized

through AI.

On the other hand, large firms may already have implemented AI to a greater extent and

may have less room for further improvement or efficiency gains. Large firms may also face higher

implementation costs and organizational challenges when adopting new technologies like AI, which

could limit their ability to reap the benefits of AI adoption. Furthermore, larger firms may be

subject to more scrutiny and regulation, which could limit their ability to exploit AI’s potential

fully.

In our last empirical test, we investigate whether AIness can be used to create a profitable

trading strategy. We apply standard portfolio sorting exercises using firm-level AIness. A portfolio

sorted on AIness among non-big stocks earns an annualized alpha of around 3% against all leading

factors models.2 This portfolio sorting result is consistent with the regression analysis, suggesting

a profitable trading pattern among small AI stocks.

Our study offers several significant contributions to the literature. Firstly, we are pioneers in

developing a measure of AIness at the firm level, enriching the growing research on AI replacement

2A portfolio sorted on AIness alone earns an annualized alpha of 2%.
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and finance. Zhang (2019) presents a theoretical framework emphasizing firms’ ability to employ

automation to replace routine-task workers, thereby hedging against macroeconomic shocks and

reducing systematic risk. Bates, Du, and Wang (2020) explores replacing non-routine tasks with AI-

driven automation, shedding light on the potential influence of workplace automation on corporate

financial policies in publicly traded US firms. Their empirical results suggest that firms capable of

substituting routine and non-routine jobs with automation tend to adopt more aggressive financial

strategies. These studies on workplace automation collectively highlight the benefits of advanced

technologies in corporate finance.

Empirical findings from Babina et al. (2021) reveal that AI technology firms boast a high-

quality workforce characterized by education, training, and marketable skills, leading to increased

productivity and product innovation. Our research demonstrates that AIness can predict stock

returns, particularly for smaller firms. In addition, our study contributes to the literature on

mispricing and risk by showing that the predictive power of AIness reverts within seven months,

suggesting that AIness represents mispricing rather than risk. Overall, our work significantly

advances understanding in the field by providing novel insights into the relationship between AI

and firm performance.

Our research holds considerable practical implications for investors, corporate executives, and

policymakers. Investors can leverage the insights gleaned from our study to refine their investment

strategies by incorporating AI-related information. Corporate executives may utilize our findings

to devise more effective AI strategies that enhance their firm’s stock returns. Policymakers can

draw on the results to develop policies that promote ethical AI adoption while mitigating potential

adverse outcomes. Our study offers valuable guidance for various stakeholders to make informed

decisions regarding AI and its impact on financial markets.

2 Construction of News-Based AI Index

In this section, we discuss first our data source and then the construction of our AI dictionary and

index.
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2.1 Data

We construct the index of AI attention discussed in the NYT articles. We choose the NYT as it is

one of the most prestigious and widely circulated worldwide and has been used in finance research

such as Garcia (2013) and Hillert and Ungeheuer (2019). From the archive of all NYT articles from

1974 to 2020, we remove articles having fewer than 100 content words to reduce noises introduced

by these short articles. Other than this restriction, we keep all articles in all columns and sections

of the NYT since we want to study the proportion of NYT content related to AI. This serves as a

good approximation of public attention to AI. Our final news sample consists of around 3 million

news articles having an average of 400 words per article.

We start our sample in 1974 because the NYT began to talk about AI frequently over the

ten years from 1974 to 1984. As discussed in the following subsection, we estimate our model

using word2vec on a rolling 120-month basis to construct the time-varying dictionary of AI.3 To

prepare texts for word2vec, we remove one-letter words, tags, and special characters and perform

lemmatization (i.e., remove word endings such as es and ing and revert words to roots such as was

→ be). We do not remove stop words because word2vec needs the context of a word to learn its

numeric representation.

2.2 Method

We apply an advanced word embedding method called word2vec developed by Mikolov et al. (2013)

to construct the real-time AI score. word2vec has seen huge popularity and adoption in various

fields. In finance, word2vec has been used to construct dictionaries of corporate culture (Li et al.

2021) or macroeconomics (van Binsbergen et al. 2022). In essence, word2vec is an unsupervised

word embedding model to construct vector representations for words in a document. It does so

by training a neural network to predict the probability of a word given its neighbor words. Thus,

word2vec is a contextualized NLP method as compared to the traditional bag-of-word approach

that treats words in isolation.

We differ from the previous applications of word2vec in finance by applying it to develop a

time-varying dictionary of AI. More specifically, as illustrated in Figure 1, every month t, we use

3Our first AI dictionary is constructed in July 1984, and the first news-based AI score is in August 1984.
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the past 120 months (including the current month) of news data to train the word2vec model.4

The input of word2vec is the collection of all sentences belonging to the news articles in the

120-month training window. Each sentence comprises one-word terms (unigrams) and two-word

terms (bigrams). Instead of arbitrarily combining individual words into bigrams, we adopt the

automatic standard phrase detection method introduced by Mikolov et al. (2013). Specifically, this

method combines two unigrams into one bigram if these words commonly occur together. In our

training, we combine two words into a bigram if they occur at least five times in the training news

collection. For example, the sentence “Artificial intelligence will be widely used.” is converted into

“artificial intelligence will be widely used” where artificial intelligence is treated as one word by

word2vec. The advantage of combining words into bigrams is twofold. First, it helps the model

construct vector representations for sensible words. Second, it reduces the number of words that

the model is required to learn, thus speeding up the training process.

The output of the monthly estimation process is one numeric vector for each word in the news

collection. Following standard practice, we represent each word by a 100× 1 vector. Among these

produced word vectors, we have a numeric vector to represent the term artificial intelligence. Using

these word vectors, we compute the cosine similarity between all other terms in the news collection

with artificial intelligence. We can then identify the 100 words having the highest cosine similarities

with artificial intelligence, i.e., 100 words most related to artificial intelligence. We refer to these

100 AI-related words as the AI dictionary in month t.

After constructing the AI dictionary in month t, we compute the frequency of these AI words

in news articles in the next month t + 1. We sum up the total counts of these AI-related words

and divide it by the total number of words across articles each day in month t+ 1 to compute the

daily AI attention scores in month t+ 1.

We roll this estimation method one month forward by running the word2vec model in month

t+1 using news data from month t− 119 to month t+1 and compute the AI score in month t+2.

Iterating this process forward, we can thus construct real-time daily news-based AI attention.

In Figure 2, we plot the word cloud of our time-varying AI dictionary, which aggregates our

monthly 100-word dictionaries. In this word cloud, the bigger the terms, the higher the frequency

4We use the gensism package in Python to train the word2vec model. In training, as recommended by the package
author, we use a window size of five words and keep words with at least five appearances in the corpus.
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of the words. We can see that all frequently used words are strongly related to AI, such as artifi-

cial intelligence, robotics, computational, molecular biology, and neural network.

In Figure 3, we plot the time series of our real-time AI score from 1985 to 2020. Panel A plots

the daily index, and Panel B plots the aggregated monthly index. As mentioned above, the NYT

began discussing AI in the mid-1970s. As illustrated, the AI index fluctuated during the 1980s

and 1990s. After that, news media paid less attention to AI during the 2000s. AI then regained

popularity during the 2010s with advances in data storage methods and processing powers, i.e., the

availability of “big data.” AI attention saw a fallback around 2019-2020. We conjecture that at the

time of writing this paper in early 2023, our AI index would see a resurgence due to the ongoing

news and social media frenzy over ChatGPT and other recently introduced AI-powered chatbots.

3 Construction of Firm AIness

In this section, we first describe the construction of our firm-level AIness (AI beta) and its charac-

teristics.

3.1 Construction

To measure the degree of firm exposure to AI, we use the comovements between firm returns and our

constructed AI index, which proxies investors’ attention to AI news. Specifically, we use a rolling

six-month window to regress excess daily stock returns onto daily AI and control for common risk

factors in Fama and French (2018), including market (MKT), size (SMB), value (HML), momentum

(MOM), profitability (RMW), and investment (CMA). Our regression specification is as follows:

riτt−5→t = αit + βAI
it AIτt−5←t + βMKT

it MKTτt−5→t + βSMB
it SMBτt−5→t + βHML

it HMLτt−5→t

+ βMOM
it MOMτt−5→t + βRMW

it RMWτt−5→t + βCMA
it CMAτt−5→t + ϵτt−5→t ,

(1)

where riτt−5→t is the excess return of stock i on day τ in a rolling six-month window from month

t − 5 to month t and βAI
it (referred to as AI beta) is the measure of firm exposure to AI news

after netting out common sources of stock return movements. In the main results, we use a rolling

window of six months to construct AI betas since, as shown in later sections, the impact of AI

betas on future stock returns is short-term. In Appendix A, we show that using a rolling window

of one or three months produces consistent results.
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Since we construct AI betas at the firm level, the resulting measures inevitably contain noises.

To mitigate the impact of noises and outliers and to put all return predictors on the same scale

in predictive regressions, we follow recent papers (Kelly, Pruitt, and Su 2019; Kozak, Nagel, and

Santosh 2020) in using rank-transformed characteristics. Specifically, every month t, we compute

the rank-transformed characteristics as follows:

rcjit =
rank(cjit)

N j
t + 1

− 0.5, (2)

where cjit is characteristic j of firm i in month t, rank(.) is the rank function that yields rank from 1

to N j
t , and N j

t is the number of stocks having data on characteristic j in month t. We subtract the

rank-transformed characteristics by 0.5 so that the resulting ranked characteristic rcjit falls within

the range from -0.5 to 0.5.5

3.2 Characteristics

We first examine the heterogeneity of AI betas across industries. Our stock universe is the merged

dataset between CRSP and Computstat following Fama and French (1993) merging convention.

Our sample is from 1985 to 2020, corresponding to the availability of the AI score. Figure 4 plots

the time series of AI betas for each of the 11 Fama-French industries. To compute the industry-level

AI betas, we value-weight AI betas of stocks belonging to each industry. The common theme from

all industries is that industry-level AI betas become more volatile during the past decade from 2010

to 2020, the period when news media increases coverage of AI-related news as evident in Figure 3.

To quantify the differences in AI betas among industries, we run a panel regression of firm-

level AI betas on industry dummies and year-month fixed effects and cluster standard errors by

both firms and year-months. We choose Business Equipment as our baseline industry. Panel A

of Table 1 shows that Energy, Health, Nondurables, and Others have significantly lower AI betas

than Business Equipment. Health has the lowest AI betas among industries and no industry has

statistically higher AI betas than Business Equipment.

In Panel B of Table 1, we replace industry dummies with firm characteristics to examine what

characteristics explain AI betas. We also include firm and year-month fixed effects. We find that

5Dividing ranks by the number of stocks and scaling them to range between -0.5 and 0.5 are deterministic functions
that do not change statistical significance in regressions.
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AI betas are higher in firms with larger market equity (mve), higher value (bm), higher market beta

(beta), higher return on equity (roeq), higher leverage (lev), higher R&D over sales, and higher

sales growth (sgr). AI betas are also higher in firms with lower return volatility and are unrelated

to firm age.

In Table A.1, we report the five firms having the highest average AI betas for each industry

from 2011 to 2020. We include only firms having at least 60 months of AI betas in computing the

time-series averages. Unsurprisingly, many of these are high-tech companies. Finally, AI betas are

fairly persistent, with an average cross-sectional auto-correlation of 75%.

4 Prediction Results

4.1 Predicting Next One-Month Returns

Our main research question is whether firm exposures to AI news predict future returns after

controlling for common stock characteristics in Green, Hand, and Zhang (2017).6 We employ the

standard Fama-MacBeth regression (Fama and MacBeth 1973) to investigate this research question.

First, every month t, we run the cross-sectional regression:

rit+1 = at + λt ×AI betait + γ
′
tXit + ϵit+1, (3)

where rit+1 is the excess return of stock i in month t+1, AI betait is AI exposure of firm i in month

t, and Xit is the control variables from Green, Hand, and Zhang (2017). Second, we compute the

time series averages of λt and γt to estimate the risk premium of AI beta and other control variables.

We report the premium estimates with their t-statistics computed with Newey and West (1987)

standard errors.

Panel A of Table 2 reports the results for the universe of all stocks. In column (1), when we

do not control for any common return predictors, AI beta’s estimated annualized risk premium is

2.8%, significant at the 1% level. In economic terms, on average, a firm with the highest AI beta

earns an annualized return of 2.8% higher than a firm with the lowest AI beta. When we control for

seven common return predictors (size, book-market, market beta, momentum, investment, return

on equity, and idiosyncratic volatility) in column (2), the risk premium of AI is still significant at

6We drop variable IPO because including this variable substantially reduces the sample size.
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the 1% level. In column (3), we extend the list of control variables in column (2) to further include

gross profitability, leverage, capital expenditure growth, research, and development expenditure as

a percentage of sales, sale concentration, and sales growth, the estimated risk premium of AI beta

is still significant at the 5% level.

In Panel B, we examine the universe of stocks having market values below the NYSE 50th

percentile every month and find that the results remain consistent. In Panel C, we examine stocks

having a market value above the NYSE 50th percentile. For this set of large stocks, the risk

premium of AI beta is still positive but far from significant. We conclude that AI news only has

pricing effects on small stocks.7

In Table 2, to mitigate the impacts of noises and estimation errors in AI betas, we rank-transform

them before using them in the Fama-MacBeth regression. However, if estimation errors are large, AI

betas’ ranks are still unreliable. To further mitigate the impact of estimation errors, we transform

AI betas into deciles, i.e., instead of ranking AI betas from 1 to Nt, we now rank them from 1 to

10. We again scale the decile-transformed AI betas to range between -0.5 to 0.5. In Table 3, we use

decile-transformed AI betas and document that the results are consistent with rank-transformed

betas in Table 2.

To investigate whether specific industries drive the predictive power of AI betas, we replace

excess returns with industry-adjusted returns in equation (3). We compute industry-adjusted re-

turns as the difference between stock i’s return in month t and the value-weighted average return

in month t of the industry that stock i belongs to. We use the Fama-French 49 industry classifica-

tions. As reported in Table 4, the results for industry-adjusted returns are still consistent with the

excess returns discussed above. After netting out the industry return effects, firms with higher AI

exposures earn higher returns the next month. The link between AI exposures and future returns is

concentrated among small stocks, i.e., stocks having market values below the NYSE 50th percentile.

To further examine the robustness of the premium of AI betas, we include all 101 stock char-

acteristics from Green, Hand, and Zhang (2017) into our predictive regressions. Chib et al. (2022)

show that including additional characteristics reveals a clearer slope in their corresponding relation-

ships not subsumed by other characteristics. Since many of these characteristics are very sparse,

7We also try partitioning the universe of stocks into young and old firms but do not find a difference in return
predictions between the two groups.
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including them in our regressions substantially reduces the number of stock-month observations.

Thus, instead of running the Fama-MacBeth regression, which requires us to run the cross-sectional

regressions monthly, we pull all stock-month observations into a panel regression. We continue to

use rank-transformed characteristics in our panel regression to minimize the impact of outliers. We

include stock and year-month fixed effects and cluster standard errors by stocks and year-months.

Panel A of Table 5 reports the results for excess returns. Accordingly, the coefficient on AI beta

is still significant at the 5% level for all stocks (column 1) and small stocks (column 2). In Panel

B, with industry-adjusted returns, the coefficient on AI beta is significant at the 5% level for all

stocks and 10% for both small and large stocks.

Overall, firms with higher AI news exposure earn higher returns the next month. The result is

concentrated among small stocks and is robust to different controls and specifications.

4.2 Predicting Next Twelve-Month Returns

To investigate the long-term effect of AI news on stock returns, we rerun the Fama-MacBeth

regression (3) but with returns from one to twelve months ahead on the left-hand side and control for

seven common return predictors (size, book-market, market beta, momentum, investment, return

on equity, and idiosyncratic volatility). Table 6 reports the results with each column corresponding

to a return horizon from the next one to twelve months. For the case of all stocks in Panel A, AI

beta has a significant positive risk premium for one month ahead and yields negative risk premiums

over months three to nine. Among these months, the risk premiums in months five and seven are

significant at 10%. The results for small stocks in Panel B are consistent with those for all stocks,

while big stocks in Panel C do have any significant results.

In Figure 5, we visualize the patterns of AI risk premiums from Table 6. These results suggest

that AI news causes initial overreactions in small stocks having high AI exposures, resulting in

a positive risk premium the next month. These initial overreactions are corrected in subsequent

months, leading to significant negative premiums in months 5 to 7. Compared to large stocks, it is

more challenging to value small stocks with high AI exposures, so the influence of AI news is more

substantial in these small stocks.

In Table 7, we replace excess returns with industry-adjusted returns and redo regression analysis

in Table 6. We find that industry-adjusted returns display the same patterns of initial overreactions
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to AI news in small stocks and subsequent corrections. Yet the subsequent corrections are not as

significant as with excess returns.

We conclude that AI news causes initial overreactions and subsequent corrections among small

AI stocks, which are more challenging to value than large tech firms. Thus, AI betas are more

associated with mispricing than a risk-based mechanism.

4.3 Predicting Financial Performance

We have shown that AI betas forecast higher returns one month ahead and lower returns five to

seven months ahead among small firms. In this section, we provide a possible explanation for this

pattern. Specifically, we run the following panel regression using AI betas to predict firm financial

fundamentals:

yi,t→t+12 = α+ β ×AI betait + ϵi,t→t+12, (4)

where yi,t→t+12 is either sales growth (sgr), capital expenditure growth (grcapx), return on asset

(roaq), or return on equity (roeq) of firm i over the next 12 months. We include firm and year-month

fixed effects and cluster standard errors by firms and year-months.

We find that for the sample of all stocks in Panel A of Table 8, AI betas positively predict the

return on equity (significant at the 5% level), return on assets (significantly at the 10% level), and

sales growth (marginally significant at the 10% level) over the next 12 months. For small stocks in

Panel B, higher AI betas are associated with higher sales growth and higher return on equity, both

significant at the 5% level. In Panel C, the link between AI betas and future financial performance

is almost non-existent for big stocks, except for return on equity (significant at the 10% level).

Our results here, combined with the return prediction pattern presented earlier, paint a clearer

picture: In response to AI news, investors overreact to high AI beta stocks in anticipation of

higher sales growth and stronger financial performance in the short run. This overreaction leads to

higher returns one month ahead and lower returns five to seven months ahead due to subsequent

corrections. The links between AI exposures and future financial performance and returns are

concentrated in small stocks.
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5 Portfolio Sorts

This section investigates whether we can exploit AI news to create profitable trading strategies by

conducting standard portfolio sorts based on AI betas.

5.1 Portfolios Sorted on AI Beta

We first consider portfolios sorted on AI betas. Specifically, at every month’s end, we sort stocks

into three equal buckets based on their AI betas as constructed in Section 3 and rebalance the

portfolios monthly.

The first two rows of Table 9 report the average rank-transformed AI betas and market values

of the three resulting portfolios sorted on AI betas. Stocks in the lowest and highest terciles have

smaller market values than those in the middle bucket, indicating that returns of small firms are

more likely to comove (in both directions) with AI news than large firms.

Panel A of Table 9 reports results for equal-weighted portfolios. The first row shows that time-

series average returns of portfolios sorted on AI betas increase monotonically from the lowest to

the highest. The high-minus-low portfolio has an average annualized return of 1.9%, significant at

the 1% level. This value is consistent with the risk premium estimated in the univariate Fama-

MacBeth regression reported in the first column of Table 2. The remaining rows of Panel A report

the time-series alphas of the zero-cost portfolio sorted on AI betas against four leading factor

models, including the six-factor model (FF6) of Fama and French (2018), q-factor model (Q5)

of Hou et al. (2021), mispricing model of Stambaugh and Yuan (2017), and behavioral model of

Daniel, Hirshleifer, and Sun (2020). Accordingly, the equal-weight high-minus-low portfolio yields

annualized alphas above 2% against all factor models, all significant at the 1% level.

Panel B shows the results for value-weighted portfolios sorted on AI betas. Since the impact

of AI news is concentrated among small stocks, the value-weighted high-minus-low portfolio yields

smaller mean returns and alphas than the equal-weighted portfolio. Annualized mean return and

alphas are above 1%, but none are significant.
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5.2 Portfolios Double-Sorted on Size and AI Beta

We next examine the interplay between size and AI betas. Every month end, we first sort stocks

into two size buckets using the NYSE 50th percentile break point. Based on their AI betas, we sort

stocks into three equal buckets within each size bucket. We rebalance the portfolios monthly.

Panel A of Table 10 reports the results for equal-weighted portfolios. Within each size bucket,

average returns increase monotonically from the lowest to highest AI beta tercile. However, only

within small stocks, the high-minus-low AI beta portfolio yields a significant mean return and

alphas above 2%, all significant at the 1% level.

Panel B reports the results for value-weighted portfolios. We see a pattern similar to the equal-

weighted portfolios: mean returns increase monotonically from the lowest to highest AI beta tercile

within each size bucket; yet only within the small size bucket does the top-minus-bottom AI beta

portfolio have significant mean return and alphas. Its alphas are greater than those of the equal-

weighted counterpart, averaging 3% against the four factors model, all significant at the 1% level.

Overall, we can create profitable portfolios out of AI news, making annualized alphas of about

2% unconditionally, or if we first condition on size, we can earn alphas of annualized 3% within

stocks having market values below the NYSE 50th percentile break point.

6 Discussion and Possible Consequences

This section summarizes the advent of large language models (LLMs), e.g., ChatGPT, and the AI

narrative this may create for firms. This has also led to an investment frenzy on pre-IPO firms

across venture capitalists and private equity investors. Several public companies are gearing up to

acquire these niche AI startups. This necessitates ethical and regulatory supervision and has policy

implications.

6.1 ChatGPT and Large Language Models

OpenAI’s ChatGPT, the fastest-growing application in human history, is built on an LLM using

generative/conversational AI. This chatbot enables users to have human-like conversations by rec-

ognizing patterns. This growth has outpaced TikTok, Instagram, etc. An LLM is a deep-learning

algorithm that can recognize, summarize, translate, predict, and generate text and other content
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based on knowledge gained from massive data sets. LLMs can teach AIs human languages, under-

stand various subject disciplines, write software code and create graphics based on text descriptions.

Lopez-Lira and Tang (2023) have documented the increase in accuracy of stock price prediction

using ChatGPT. Hansen and Kazinnik (2023) show that LLMs like ChatGPT can decode Fedspeak

(i.e., the language used by the Fed to communicate on monetary policy decisions). Cowen and

Tabarrok (2023) and Korinek (2023) demonstrate that ChatGPT is helpful in teaching economics

and conducting economic research. Noy and Zhang (2023) find that ChatGPT can enhance pro-

ductivity in professional writing jobs. Also, Yang and Menczer (2023) demonstrate that ChatGPT

successfully identifies credible news outlets.

Arguably, ChatGPT and GPT-4 will create new AI narratives for firms. It remains to be seen

how firms use these LLMs to their advantage. Opportunities to improve productivity seem most

apparent in the information technology, education, government, and business services industries.

But despite being embraced by businesses and organizations worldwide, ChatGPT poses risks.

Considering the potential impact on society, rules, and regulations might be needed for artificial

intelligence (AI) development.

6.2 AI-frenzy in Pre-IPO private investments

Artificial Intelligence stocks have been surging on the hype surrounding ChatGPT, the viral AI

chatbot that reached 100 million users in just two months from November 2022. Microsoft is

making a significant investment in OpenAI, the creator of ChatGPT. Alphabet, which controls

93% of the search market, scrambled to roll out its AI chatbot BARD. Bloomberg announced

they would release ChatGPT Bloomberg, Elon Musk has launched an AI company, and Amazon

is launching its generative AI service through its cloud computing platform. The AI war among

tech giants is heating up as generative technologies capture investors’ attention. Mentions of AI,

machine learning, and related terms have surged in the recent earnings calls of the biggest software

and semiconductor companies.

6.3 Similarity to the 2001 Dotcom Boom

The proliferation of the World Wide Web (WWW) during the latter half of the 1990s ushered in

a new era of internet-based companies, keen to capitalize on the wave of hype and anticipation
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the online world was expected to offer. Indeed, the internet is widely heralded as one of the

biggest technological breakthroughs. The term “Dot Com” was magic. It promised vast riches

from companies that leveraged the power of the internet.

As with the “Dot Com” boom, there is a great deal of hope, marketing, and empty promises

swirling around the recent AI explosion. The challenge is to separate fact from fiction. While this

boom and crash were unfortunate for investors, it produced some of the most innovative ideas ahead

of their time. Concepts developed by many companies that went under, including VoIP, eCommerce,

big data, and the web experience, still live on today, in many cases, as the fundamental concepts

driving success in large corporations. But, amid the app-building VC frenzy, we must remain

mindful of fundamental differences between today’s tech environment and the dot-com era.

7 Conclusion

This paper investigates the asset pricing impacts of public attention to artificial intelligence (AI).

To extract public attention to AI, we apply an advanced NLP method called word2vec to build

a dynamic dictionary of AI terms from the New York Times (NYT) articles. We then count the

frequency of this AI dictionary from 3,000,000 NYT articles from 1974 to 2020 to construct a

real-time index of AI attention.

After controlling for benchmark pricing factors, we compute firm exposures to AI (AIness) by

regressing daily stock returns onto our daily AI score. Our main research question is how AIness

forecasts future stock returns. We document that high AIness forecasts higher returns one month

ahead and lower returns five to seven months ahead. The predictive power is concentrated among

non-big stocks. Our findings indicate that small AI firms are more difficult to value, resulting in

initial market overreactions to AI news and subsequent market corrections.

We conduct portfolio sorts on AIness to examine whether AI news can be used to create profitable

trading strategies. We find that a high-minus-low AI portfolio among non-big stocks generates

annual alphas of 3% against benchmark leading factor models. Our paper reveals that the AI

narrative has a sizable impact on stock prices and can be exploited to create trading profits.
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Figure 1. Estimation Scheme

This figure plots the rolling estimation scheme to construct the AI score. Every month t, news articles in the previous
120 months (including month t) are used to compute word vectors via word2vec. These word vectors are used to
construct a dynamic 100-word AI dictionary. Articles in month t + 1 are then used to construct the real-time AI
score.

Timet−121 t−120 t−119
. . .

t−1 t t+1

Use a 120-month rolling window to compute word vectors and construct the dynamic 100-word AI dictionary

Use articles in month t+ 1 to compute the real-time AI score

Figure 2. AI Word Cloud

This figure plots the word cloud for terms related to artificial intelligence (AI) in the New York Times articles from
1985 to 2020. The bigger the size, the more frequently the term appears in news articles. See Section 2 for details
on extracting these terms.
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Figure 3. Time Series AI Index

This figure plots the time series of the daily artificial intelligence (AI) index constructed from the New York Times
articles. The sample is from 1985 to 2020. See Section 2 for details on constructing the AI index.
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Figure 4. Time Series of AI Betas at Industry Level

This figure plots the time series of artificial intelligence (AI) betas for 11 Fama-French industries. We compute
monthly AI betas for every stock by regressing daily stock returns onto the daily AI index and six Fama-French
factors using a rolling six-month window. Every month, we cross-sectionally scale AI betas from -0.5 to 0.5. Scaled
stock-level AI betas are then averaged into industry-level betas weighted by stock market capitalization. The sample
is from 1985 to 2020. See Section 2 for details on constructing the AI index.
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Figure 5. Predicting Next 12-Month Returns

This figure plots the factor risk premium for AI betas estimated via Fama-Macbeth regressions. Every month, we
run the following cross-sectional regression:

rit+h = a+ λt ×AI betait + γ
′
tXit + ϵit+h,

where rit+h is excess return of stock i in month t+ h in annualized percentage point (x axis), AI beta is AI beta of
stock i in month t constructed from rolling regression of daily stock returns onto daily AI index and Fama-French
six factors over a rolling six-month window, and Xit is a set of control variables of stock i in month t: market equity
(mve), book-market (bm), market beta (beta), momentum (mom12m), annual change in investment (invest), return
on equity (roeq), and standard deviation of daily returns from previous month (retvol). Every month, all independent
variables are ranked and rescaled to fall within the range from -0.5 to 0.5. Solid lines are time-series averages of λt

and shades indicate the 90th confidence interval using Newey-West standard errors with six lags. Panel A reports
results for all stocks; Panel B (C) reports results for stock below (above) the 50th percentile NYSE market value
break point. The sample is from 1985 to 2020.
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Table 1

Characteristics of AI Betas

This table reports results from the following panel regression

AI betait = α+ βXit + eit,

AI beta is AI beta of stock i in month t constructed from rolling regression of daily stock returns onto daily AI
index and Fama-French six factors over a rolling six-month window and Xit is a vector of industry dummies in
Panel A and firm characteristics in Panel B. The baseline industry in Panel A is Business Equipment; the vector
of characteristics in Panel B includes age, market equity (mve), book-market (bm), market beta (beta), momentum
(mom12m), standard deviation of daily returns from previous month (retvol), return on equity (roeq), gross profit
divided total asset (gma), leverage (lev), two-year percent change in capital expenditures (grcapx), R&D divided
by sales (rd sale), annual change in investment (invest), industry sales concentration (herf), and sales growth (sgr).
Every month, both AI betas and firm characteristics are ranked and rescaled to fall within the range from -0.5 to
0.5. In Panel A, the regression includes year-month fixed effects; in Panel B, the regression includes both firm and
year-month fixed effects. Standard errors in both panels are clustered by firms and year-months. The sample is from
1985 to 2020.

Panel A: Industry Dummies

β t

Chems 0.002 (0.44)

Durbl 0.003 (0.88)

Enrgy -0.012 (-2.63)

Hlth -0.016 (-5.76)

Manuf 0.001 (0.58)

Money -0.001 (-0.60)

NoDur -0.006 (-1.96)

Other -0.006 (-2.25)

Shops -0.005 (-1.81)

Telcm -0.004 (-1.04)

Utils 0.003 (0.82)

Panel B: Firm Characteristics

β t

age -0.005 (-0.48)

mve 0.025 (2.25)

bm 0.010 (1.79)

beta 0.011 (2.30)

mom12m -0.001 (-0.29)

invest 0.001 (0.27)

roeq 0.006 (1.93)

retvol -0.016 (-4.63)

gma 0.005 (0.70)

lev 0.013 (1.76)

grcapx -0.004 (-1.01)

rd sale 0.042 (3.45)

herf 0.005 (0.62)

sgr 0.007 (1.86)
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Table 2

Predicting Next One-Month Returns

This table report factor risk premia estimated via Fama-Macbeth regressions. Every month, we run the following
cross-sectional regression:

rit+1 = at + λt ×AI betait + γ
′
tXit + ϵit+1,

where rit+1 is the excess return of stock i in month t+1 in annualized percentage point, AI beta is AI beta of stock i
in month t constructed from rolling regression of daily stock returns onto daily AI index and Fama-French six factors
over a rolling six-month window, and Xit is a set of control variables of stock i in month t: market equity (mve),
book-market (bm), market beta (beta), momentum (mom12m), standard deviation of daily returns from previous
month (retvol), return on equity (roeq), gross profit divided total asset (gma), leverage (lev), two-year percent change
in capital expenditures (grcapx), R&D divided by sales (rd sale), annual change in investment (invest), industry sales
concentration (herf), and sales growth (sgr). Every month, all independent variables are ranked and rescaled to fall
within the range from -0.5 to 0.5. Reported are time-series averages of λt and γt with their t-statistics corrected for
Newey-West standard errors with six lags in parentheses. Panel A reports results for all stocks; Panel B (C) reports
results for stock below (above) the 50th percentile NYSE market value break point. The sample is from 1985 to 2020.

Panel A: All Stocks Panel B: Small Stocks Panel C: Big Stocks
(1) (2) (3) (1) (2) (3) (1) (2) (3)

AI beta 2.77 2.54 1.90 2.93 2.92 2.25 1.83 0.22 0.11
(2.92) (3.09) (2.03) (3.04) (3.44) (2.22) (1.04) (0.15) (0.07)

mve -16.20 -15.24 -21.32 -19.07 -7.91 -10.73
(-4.90) (-3.93) (-4.71) (-3.82) (-1.00) (-1.25)

bm 1.47 5.82 2.04 6.72 -1.08 4.01
(0.50) (2.32) (0.68) (2.55) (-0.35) (1.35)

beta 5.53 2.00 7.52 3.40 1.65 -0.97
(1.50) (0.61) (1.92) (0.99) (0.40) (-0.25)

mom12m 7.31 2.76 7.84 2.41 7.38 6.03
(2.02) (0.81) (2.22) (0.69) (1.79) (1.68)

invest -8.32 -6.30 -9.15 -7.74 -3.02 0.31
(-5.54) (-4.70) (-5.59) (-5.06) (-2.36) (0.17)

roeq 6.85 7.68 7.29 8.36 3.60 4.20
(3.10) (4.67) (2.99) (4.61) (1.90) (2.17)

retvol -5.29 -5.53 -5.06 -5.61 -6.41 -4.77
(-1.93) (-2.04) (-1.80) (-2.03) (-2.08) (-1.70)

gma 7.38 7.37 5.97
(3.16) (2.91) (1.90)

lev 8.08 8.45 3.48
(2.68) (2.57) (1.17)

grcapx -2.96 -2.49 -4.28
(-2.50) (-1.95) (-2.47)

rd sale 15.86 16.85 8.68
(4.19) (4.26) (2.37)

herf -0.60 -0.83 -0.42
(-0.36) (-0.43) (-0.26)

sgr -1.77 -1.93 1.72
(-1.42) (-1.39) (0.80)

Intercept 11.97 12.33 15.38 12.56 11.39 14.68 9.97 10.42 13.99
(3.42) (3.56) (3.88) (3.34) (3.36) (3.72) (3.65) (2.33) (2.66)

R2(%) 0.05 4.08 4.65 0.05 3.67 4.05 0.29 10.09 12.23
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Table 3

Predicting Next One-Month Returns:
Decile-Transformed AI Beta

This table report factor risk premia estimated via Fama-Macbeth regressions. Every month, we run the following
cross-sectional regression:

rit+1 = at + λt ×AI betait + γ
′
tXit + ϵit+1,

where rit+1 is the excess return of stock i in month t + 1 in annualized percentage point, AI beta is AI beta of
stock i in month t constructed from rolling regression of daily stock returns onto daily AI index and Fama-French
six factors over a rolling six-month window, and Xit is a set of control variables of stock i in month t: market
equity (mve), book-market (bm), market beta (beta), momentum (mom12m), standard deviation of daily returns
from previous month (retvol), return on equity (roeq), gross profit divided total asset (gma), leverage (lev), two-year
percent change in capital expenditures (grcapx), R&D divided by sales (rd sale), annual change in investment (invest),
industry sales concentration (herf), and sales growth (sgr). Every month, AI betas are ranked into 10 deciles and
all other independent variables are normally ranked and rescaled to fall within the range from -0.5 to 0.5. Reported
are time-series averages of λt and γt with their t-statistics corrected for Newey-West standard errors with six lags
in parentheses. Panel A reports results for all stocks; Panel B (C) reports results for stock below (above) the 50th

percentile NYSE market value break point. The sample is from 1985 to 2020.

Panel A: All Stocks Panel B: Small Stocks Panel C: Big Stocks
(1) (2) (3) (1) (2) (3) (1) (2) (3)

AI beta 2.89 2.66 1.92 3.07 3.08 2.31 1.82 0.07 -0.12
(2.83) (2.98) (1.89) (2.96) (3.35) (2.09) (0.96) (0.04) (-0.07)

mve -16.20 -15.21 -21.32 -19.01 -7.88 -10.45
(-4.90) (-3.93) (-4.71) (-3.82) (-1.00) (-1.21)

bm 1.47 5.83 2.04 6.74 -1.05 4.06
(0.50) (2.32) (0.68) (2.56) (-0.34) (1.37)

beta 5.54 2.00 7.52 3.37 1.67 -0.91
(1.50) (0.62) (1.92) (0.99) (0.40) (-0.23)

mom12m 7.32 2.78 7.85 2.43 7.37 6.06
(2.02) (0.81) (2.22) (0.70) (1.78) (1.69)

invest -8.32 -6.36 -9.16 -7.81 -3.02 0.34
(-5.54) (-4.73) (-5.60) (-5.07) (-2.35) (0.18)

roeq 6.85 7.63 7.29 8.33 3.60 4.17
(3.09) (4.63) (2.99) (4.59) (1.90) (2.16)

retvol -5.30 -5.50 -5.08 -5.59 -6.41 -4.77
(-1.93) (-2.02) (-1.80) (-2.02) (-2.08) (-1.69)

gma 7.38 7.40 5.98
(3.15) (2.92) (1.91)

lev 7.96 8.35 3.45
(2.63) (2.53) (1.15)

grcapx -2.98 -2.51 -4.23
(-2.52) (-1.96) (-2.46)

rd sale 15.65 16.69 8.52
(4.21) (4.27) (2.40)

herf -0.54 -0.81 -0.38
(-0.32) (-0.42) (-0.24)

sgr -1.78 -1.96 1.72
(-1.43) (-1.42) (0.80)

Intercept 11.97 12.33 15.38 12.56 11.39 14.69 9.98 10.42 13.87
(3.43) (3.56) (3.88) (3.34) (3.36) (3.72) (3.65) (2.32) (2.64)

R2(%) 0.05 4.08 4.65 0.04 3.66 4.04 0.29 10.08 12.22
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Table 4

Predicting Next One-Month Returns:
Industry-Adjusted Returns

This table report factor risk premium estimated via Fama-Macbeth regressions. Every month, we run the following
cross-sectional regression:

rit+1 = at + λt ×AI betait + γ
′
tXit + ϵit+1,

where rit+1 is the return of stock i over industry value-weighted average return in month t+1 in annualized percentage
point, AI beta is AI beta of stock i in month t constructed from rolling regression of daily stock returns onto daily AI
index and Fama-French six factors over a rolling six-month window, and Xit is a set of control variables of stock i in
month t: market equity (mve), book-market (bm), market beta (beta), momentum (mom12m), standard deviation of
daily returns from previous month (retvol), return on equity (roeq), gross profit divided total asset (gma), leverage
(lev), two-year percent change in capital expenditures (grcapx), R&D divided by sales (rd sale), annual change
in investment (invest), industry sales concentration (herf), and sales growth (sgr). Every month, all independent
variables are ranked and rescaled to fall within the range from -0.5 to 0.5. Reported are time-series averages of λt

and γt with their t-statistics corrected for Newey-West standard errors with six lags in parentheses. Panel A reports
results for all stocks; Panel B (C) reports results for stocks below (above) the 50th percentile NYSE market value
break point. The sample is from 1985 to 2020.

Panel A: All Stocks Panel B: Small Stocks Panel C: Big Stocks
(1) (2) (3) (1) (2) (3) (1) (2) (3)

AI beta 2.52 2.39 1.99 2.65 2.65 2.11 1.55 1.09 1.60
(2.89) (3.10) (2.13) (2.88) (3.17) (2.07) (1.25) (0.94) (1.06)

mve -15.06 -15.24 -20.22 -19.36 -5.81 -8.96
(-4.74) (-3.97) (-4.56) (-3.86) (-0.91) (-1.21)

bm 2.47 5.51 2.85 6.50 0.18 2.28
(1.02) (2.03) (1.10) (2.29) (0.10) (0.86)

beta 5.50 3.00 7.53 4.31 1.29 0.79
(2.04) (1.18) (2.39) (1.46) (0.67) (0.36)

mom12m 5.97 1.49 6.83 1.52 4.24 3.00
(1.88) (0.48) (2.17) (0.47) (1.27) (0.98)

invest -7.15 -5.90 -8.19 -7.33 -1.07 0.94
(-5.86) (-4.26) (-6.06) (-4.63) (-1.10) (0.52)

roeq 6.81 8.06 7.56 8.86 2.32 4.04
(3.32) (4.79) (3.38) (4.78) (1.51) (2.19)

retvol -5.30 -5.52 -4.91 -5.38 -6.94 -5.33
(-2.30) (-2.22) (-2.02) (-2.03) (-2.81) (-2.08)

gma 5.26 5.61 2.54
(2.05) (2.03) (0.83)

lev 7.65 7.79 4.36
(2.69) (2.45) (1.63)

grcapx -2.54 -2.05 -3.79
(-2.20) (-1.58) (-2.56)

rd sale 12.07 13.51 3.65
(4.45) (4.51) (1.54)

herf -3.38 -3.92 -2.16
(-1.93) (-1.93) (-1.57)

sgr -0.49 -0.69 3.25
(-0.41) (-0.52) (1.65)

Intercept 2.39 2.70 5.00 2.94 1.77 4.21 0.56 0.65 3.20
(1.46) (1.67) (2.36) (1.48) (1.11) (2.02) (1.16) (0.21) (0.88)

R2(%) 0.04 2.96 3.63 0.04 2.90 3.40 0.13 4.44 6.24
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Table 5

Predicting Next One-Month Returns in Panel Regressions

This table report factor risk premia estimated via the panel regressions:

rit+1 = at + λ×AI betait + γ
′
Xit + ϵit+1,

where rit+1 is the excess return of stock i in month t+1 in annualized percentage point, AI beta is AI beta of stock i
in month t constructed from rolling regression of daily stock returns onto daily AI index and Fama-French six factors
over a rolling six-month window, and Xit is a set of 101 control variables of stock i in month t from Green, Hand, and
Zhang (2017). Every month, all independent variables are ranked and rescaled to fall from -0.5 to 0.5. We include
firm and month fixed effects and cluster standard errors by firm and month. Column (1) reports results for all stocks;
column (2)/(3) reports results for stocks below/above the 50th percentile NYSE market value break point. Panel A
reports results for excess returns while Panel B reports results for industry-adjusted returns. The sample is from
1985 to 2020.

All Stocks Small Stocks Big Stocks

(1) (2) (3)

Panel A: Excess Returns

AI beta 5.59 7.39 2.67

(2.15) (2.19) (0.79)

R2(%) 20.19 20.40 24.75

Controls 101 Firm Characteristics

Fixed Effects Firm and Year-Month

Cluster S.E. Firm and Year-Month

Panel B: Industry-Adjusted Returns

AI beta 5.57 5.75 5.84

(2.29) (1.76) (1.92)

R2(%) 4.79 6.91 3.10

Controls 101 Firm Characteristics

Fixed Effects Firm and Year-Month

Cluster S.E. Firm and Year-Month
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Table 6

Predicting Next 12-Month Returns

This table report factor risk premium estimated via Fama-Macbeth regressions. Every month, we run the following
cross-sectional regression:

rit+h = a+ λt ×AI betait + γ
′
tXit + ϵit+h,

where rit+h is the excess return of stock i in month t + h in annualized percentage point (each h in each column
header), AI beta is AI beta of stock i in month t constructed from rolling regression of daily stock returns onto daily
AI index and Fama-French six factors over a rolling six-month window, and Xit is a set of control variables of stock i
in month t: market equity (mve), book-market (bm), market beta (beta), momentum (mom12m), annual change in
investment (invest), return on equity (roeq), and standard deviation of daily returns from previous month (retvol).
Every month, all independent variables are ranked and rescaled to fall within the range from -0.5 to 0.5. Reported
are time-series averages of λt and γt with their t-statistics corrected for Newey-West standard errors with six lags
in parentheses. Panel A reports results for all stocks; Panel B (C) reports results for stocks below (above) the 50th

percentile NYSE market value break point. The sample is from 1985 to 2020.

Return (t+1) (t+2) (t+3) (t+4) (t+5) (t+6) (t+7) (t+8) (t+9) (t+10) (t+11) (t+12)
Panel A: All Stocks

AI beta 2.54 0.50 -0.23 -0.24 -1.28 -0.81 -1.27 -0.60 -0.77 0.73 0.49 0.43
(3.09) (0.58) (-0.31) (-0.32) (-1.78) (-1.04) (-1.73) (-0.73) (-0.90) (0.81) (0.58) (0.53)

Intercept 12.33 12.21 12.30 12.50 12.55 12.54 12.62 12.79 12.99 13.09 12.98 12.92
(3.56) (3.51) (3.53) (3.59) (3.59) (3.59) (3.61) (3.65) (3.70) (3.72) (3.69) (3.67)

Controls Y Y Y Y Y Y Y Y Y Y Y Y
R2(%) 4.08 3.96 3.84 3.75 3.66 3.58 3.50 3.42 3.34 3.30 3.26 3.25

Panel B: Small Stocks
AI beta 2.92 0.66 -0.17 -0.39 -1.22 -0.93 -1.46 -1.00 -1.15 0.37 0.19 0.57

(3.44) (0.75) (-0.21) (-0.51) (-1.61) (-1.12) (-1.85) (-1.10) (-1.25) (0.40) (0.22) (0.68)
Intercept 11.39 11.47 11.76 11.84 11.90 11.89 11.97 12.04 12.38 12.47 12.38 12.37

(3.36) (3.36) (3.44) (3.46) (3.48) (3.47) (3.49) (3.52) (3.60) (3.60) (3.58) (3.56)
Controls Y Y Y Y Y Y Y Y Y Y Y Y
R2(%) 3.67 3.54 3.42 3.33 3.25 3.17 3.09 3.01 2.92 2.89 2.85 2.83

Panel C: Big Stocks
AI beta 0.22 -0.50 -0.13 0.91 -1.06 0.22 0.26 1.18 1.20 2.35 1.52 -0.83

(0.15) (-0.36) (-0.10) (0.72) (-0.83) (0.18) (0.21) (0.84) (0.91) (1.71) (1.12) (-0.61)
Intercept 10.42 12.04 12.46 12.30 10.96 12.92 13.99 13.42 13.14 12.89 11.42 12.33

(2.33) (2.67) (2.73) (2.75) (2.38) (2.82) (3.00) (2.88) (2.79) (2.88) (2.42) (2.58)
Controls Y Y Y Y Y Y Y Y Y Y Y Y
R2(%) 10.09 9.84 9.65 9.36 9.05 8.82 8.72 8.49 8.34 8.16 8.12 7.97
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Table 7

Predicting Next 12-Month Returns:
Industry-Adjusted Returns

This table report factor risk premium estimated via Fama-Macbeth regressions. Every month, we run the following
cross-sectional regression:

rit+h = at + λt ×AI betait + γ
′
tXit + ϵit+h,

where rit+h is the return of stock i over industry value-weighted average return in month t+h in annualized percentage
point (each h in each column header), AI beta is AI beta of stock i in month t constructed from rolling regression of
daily stock returns onto daily AI index and Fama-French six factors over a rolling six-month window, and Xit is a set
of control variables of stock i in month t: market equity (mve), book-market (bm), market beta (beta), momentum
(mom12m), annual change in investment (invest), return on equity (roeq), and standard deviation of daily returns
from previous month (retvol). Every month, all independent variables are ranked and rescaled to fall from -0.5 to 0.5.
Reported are time-series averages of λt and γt with their t-statistics corrected for Newey-West standard errors with
six lags in parentheses. Panel A reports results for all stocks; Panel B (C) reports results for stocks below (above)
the 50th percentile NYSE market value break point. The sample is from 1985 to 2020.

Return (t+1) (t+2) (t+3) (t+4) (t+5) (t+6) (t+7) (t+8) (t+9) (t+10) (t+11) (t+12)
Panel A: All Stocks

AI beta 2.39 0.50 -0.04 -0.03 -0.76 -0.46 -0.84 -0.54 -1.00 0.36 0.14 0.14
(3.10) (0.62) (-0.06) (-0.04) (-1.07) (-0.65) (-1.17) (-0.71) (-1.22) (0.42) (0.18) (0.17)

Intercept 2.70 2.60 2.62 2.75 2.92 2.95 3.01 3.11 3.15 3.30 3.36 3.38
(1.67) (1.60) (1.61) (1.68) (1.79) (1.80) (1.83) (1.89) (1.92) (2.00) (2.03) (2.04)

Controls Y Y Y Y Y Y Y Y Y Y Y Y
R2(%) 2.96 2.87 2.78 2.72 2.66 2.59 2.53 2.47 2.41 2.36 2.33 2.32

Panel B: Small Stocks
AI beta 2.65 0.52 -0.12 -0.27 -0.88 -0.64 -1.12 -0.88 -1.31 0.01 -0.16 0.27

(3.17) (0.60) (-0.14) (-0.34) (-1.14) (-0.83) (-1.46) (-1.05) (-1.48) (0.01) (-0.20) (0.32)
Intercept 1.77 1.86 2.08 2.08 2.25 2.26 2.36 2.37 2.55 2.66 2.73 2.83

(1.11) (1.16) (1.28) (1.28) (1.39) (1.40) (1.45) (1.46) (1.56) (1.61) (1.66) (1.71)
Controls Y Y Y Y Y Y Y Y Y Y Y Y
R2(%) 2.90 2.79 2.70 2.64 2.57 2.51 2.45 2.38 2.31 2.27 2.23 2.21

Panel C: Big Stocks
AI beta 1.09 0.64 0.91 1.75 0.55 1.04 1.28 0.97 0.63 1.73 0.80 -1.33

(0.94) (0.57) (0.88) (1.64) (0.55) (1.07) (1.24) (0.86) (0.63) (1.60) (0.70) (-1.15)
Intercept 0.65 2.42 2.70 2.60 1.39 3.44 3.91 3.54 3.19 3.69 2.66 2.82

(0.21) (0.78) (0.85) (0.83) (0.43) (1.06) (1.23) (1.12) (0.99) (1.23) (0.79) (0.83)
Controls Y Y Y Y Y Y Y Y Y Y Y Y
R2(%) 4.44 4.33 4.20 4.02 3.84 3.69 3.67 3.59 3.51 3.35 3.36 3.30
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Table 8

Predicting Financial Performances

This table reports the results of the following panel regression

yi,t→t+12 = α+ βAI betait + ϵi,t→t+12,

where yi,t→t+12 is the next 12 month value of stock i’s characteristics: sales growth (sgr), capital expenditure growth
(grcapx), return on asset (roaq), and return on equity (reoq) and AI beta is AI beta of stock i in month t constructed
from rolling regression of daily stock returns onto daily AI index and Fama-French six factors over a rolling six-month
window. All regressions include firm and year-month fixed effects and t-statistics are computed with standard errors
double-clustered by both firms and year-months. Panel A reports results for all stocks; Panel B (C) reports results
for stocks below (above) the 50th percentile NYSE market value break point. The sample is from 1985 to 2020. The
sample is from 1985 to 2020.

Panel A: All Stocks

sgr grcapx roaq roeq

AI beta 0.33 0.17 0.28 0.37

(1.63) (0.87) (1.86) (2.39)

R2(%) 21.23 12.64 42.79 34.00

Panel B: Small Stocks

sgr grcapx roaq roeq

AI beta 0.42 0.24 0.25 0.32

(1.98) (1.14) (1.55) (1.96)

R2(%) 21.78 13.42 39.82 31.00

Panel C: Big Stocks

sgr grcapx roaq roeq

AI beta -0.45 -0.55 0.46 0.65

(-0.97) (-1.26) (1.33) (1.70)

R2(%) 28.72 18.17 48.48 31.89
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Table 9

Portfolios Sorted on AI Beta

This table reports the results of portfolios sorted based on AI betas. Every month, we sort stocks into three equal
buckets based on their AI betas in the previous month. AI beta is constructed from the rolling regression of daily
stock returns onto the daily AI index and Fama-French six factors over a rolling six-month window. The results for
each portfolio are reported in columns 1 to 3; the last column reports results for the high-minus-low AI beta portfolio.
The first two rows report time-series averages of AI betas (scaled to range -0.5 to 0.5) and market value (in millions)
for each portfolio. Panel A (B) reports equal-weighted (value-weighted) portfolio returns results. The first row of each
panel reports time-series average portfolio returns over risk-free rate in annualized percentage points. The remaining
rows report alphas against benchmark factor models, including six-factor model (FF6) of Fama and French (2018),
q-factor model (Q5) of Hou et al. (2021), mispricing model of Stambaugh and Yuan (2017), and behavioral model of
Daniel, Hirshleifer, and Sun (2020). t-statistics corrected for Newey-West standard errors with six lags are reported
in parentheses. The sample is from 1985 to 2020.

1 2 3 3-1

AI Beta -0.33 0.00 0.33

Size 1982 5073 2295

Panel A: Equal Weighted

Mean Return 11.42 11.15 13.33 1.91

(2.92) (3.80) (3.56) (3.07)

FF6 3.92 2.26 6.06 2.14

(2.70) (2.87) (4.34) (3.15)

Q5 5.07 2.96 7.46 2.39

(2.78) (2.64) (4.26) (3.57)

Mispricing 5.55 3.01 8.05 2.50

(3.07) (2.88) (4.38) (3.52)

Behavioral 7.42 4.74 9.55 2.14

(2.66) (2.89) (3.44) (2.72)

Panel B: Value Weighted

Mean Return 8.53 9.09 10.19 1.66

(2.85) (3.86) (3.82) (1.39)

FF6 0.02 -0.34 1.39 1.37

(0.03) (-0.87) (1.82) (0.98)

Q5 -0.36 -0.85 1.17 1.53

(-0.44) (-1.64) (1.64) (1.18)

Mispricing 0.33 -0.62 2.17 1.83

(0.37) (-1.13) (2.61) (1.25)

Behavioral 0.52 -0.75 2.25 1.73

(0.57) (-1.56) (2.64) (1.15)

33



Table 10

Portfolios Double-Sorted on Size and AI Beta

This table reports the results of portfolios double-sorted on size and AI betas. Every month, stocks are sorted into
two buckets using the NYSE 50th size break point in the previous month (Size 1 and Size 2); then, within each
size bucket, stocks are sorted into three equal buckets based on their AI betas in the previous month. AI beta is
constructed from rolling regression of daily stock returns onto the daily AI index and Fama-French six factors over
a rolling six-month window. Time-series average excess returns in annualized percentage points for each portfolio
are reported in columns 1 to 3; columns 3-1 report results for the high-minus-low AI beta portfolio. The remaining
columns report alphas against benchmark factor models, including six-factor model (FF6) of Fama and French (2018),
q-factor model (Q5) of Hou et al. (2021), mispricing model of Stambaugh and Yuan (2017), and behavioral model of
Daniel, Hirshleifer, and Sun (2020). t-statistics corrected for Newey-West standard errors with six lags are reported
in parentheses. Panel A (B) reports equal-weighted (value-weighted) portfolio returns results. The sample is from
1985 to 2020.

AI beta 1 2 3 3-1 FF6 Q5 Mispricing Behavioral

Panel A: Equal Weighted

Size 1 11.91 11.86 13.92 2.01 2.42 2.62 2.82 2.43

(2.86) (3.68) (3.44) (3.00) (3.33) (3.65) (3.72) (2.84)

Size 2 9.60 9.67 10.60 1.00 0.92 0.92 1.11 0.51

(3.18) (3.81) (3.83) (1.22) (0.93) (0.95) (0.98) (0.48)

Panel B: Value Weighted

Size 1 8.87 11.09 11.41 2.55 2.84 2.55 3.22 3.07

(2.37) (3.69) (3.29) (2.86) (2.97) (2.85) (3.06) (2.78)

Size 2 8.49 8.77 10.55 2.06 1.20 1.07 1.38 2.06

(3.02) (3.81) (4.10) (1.94) (0.94) (0.88) (0.97) (1.47)
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Appendix

AI Narrative and Stock Mispricing

Appendix A Additional Tables

Table A.1

Top Ten Companies Having Highest AI Exposures from 2011 to 2020

This table lists the top 10 companies having the highest AI betas for each industry from 2011 to 2020. Companies
are selected based on the time-series average of monthly AI betas; companies must have at least 60 non-missing AI
beta observations from 2011 to 2020 to be included.

Industry PERMNO Name Industry PERMNO Name

BusEq 15119 WORKIVA INC Money 15064 FIRST FOUNDATION INC

BusEq 80185 PLANTRONICS INC Money 43617 AMERICAN INDEPENDENCE CORP

BusEq 90914 WEBMD HEALTH CORP Money 13400 WAGEWORKS INC

BusEq 87160 DATALINK CORP Money 86793 YADKIN FINANCIAL CORP

BusEq 81165 MIND TECHNOLOGY INC Money 80569 PULASKI FINANCIAL CORP

Chems 13556 TARONIS TECHNOLOGIES NoDur 68718 TOFUTTI BRANDS INC

Chems 89597 FLEXIBLE SOLUTIONS INTL INC NoDur 85951 OMEGA PROTEIN CORP

Chems 82699 ELIZABETH ARDEN INC NoDur 14781 TRIBUNE PUBLISHING CO

Chems 12579 GEVO INC NoDur 89471 LEAPFROG ENTERPRISES INC

Chems 13610 OLIN CORP NoDur 92449 REEDS INC

Durbl 10667 FUEL SYSTEMS SOLUTIONS INC Other 83875 INDUSTRIAL SERVICES AMER INC

Durbl 92589 KANDI TECHNOLOGIES GROUP Other 50606 TIDEWATER INC

Durbl 54704 MODINE MANUFACTURING CO Other 13267 CAESARS ENTERTAINMENT CORP

Durbl 60506 PACCAR INC Other 24441 COEUR MINING INC

Durbl 12503 NAVISTAR INTERNATIONAL CORP Other 83734 WILHELMINA INTERNATIONAL INC

Enrgy 12389 TRIANGLE PETROLEUM CORP Shops 14983 WAYFAIR INC

Enrgy 63335 PIONEER ENERGY SERVICES CORP Shops 75489 STAPLES INC

Enrgy 92619 GRAN TIERRA ENERGY INC Shops 92471 TITAN MACHINERY INC

Enrgy 14634 PARSLEY ENERGY INC Shops 89447 CALAVO GROWERS INC

Enrgy 13124 VITAL ENGY INC Shops 14812 EL POLLO LOCO HOLDINGS INC

Hlth 92805 TIANYIN PHARMACEUTICAL CO Telcm 15226 ANTERIX INC

Hlth 14468 PHIO PHARMACEUTICALS CORP Telcm 92454 INTELIQUENT INC

Hlth 91348 ALPHATEC HOLDINGS INC Telcm 89916 NEXSTAR MEDIA GROUP

Hlth 86444 INOVIO PHARMACEUTICALS INC Telcm 14060 VISLINK TECHNOLOGIES INC

Hlth 14033 ORGANOVO HOLDINGS INC Telcm 90763 NEUSTAR INC

Manuf 93149 ZAGG INC Utils 13019 GENIE ENERGY LTD

Manuf 14982 VIVINT SOLAR INC Utils 12476 TARGA RESOURCES CORP

Manuf 75272 SEVCON INC Utils 29285 DELTA NATURAL GAS CO INC

Manuf 41320 SL INDUSTRIES INC Utils 26470 ENERGEN CORP

Manuf 81857 CAMERON INTERNATIONAL CORP Utils 25590 NATIONAL FUEL GAS CO
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Table A.2

Predicting Next One-Month Returns:
Three-Month Construction Window

This table report factor risk premia estimated via Fama-Macbeth regressions. Every month, we run the following
cross-sectional regression:

rit+1 = at + λt ×AI betait + γ
′
tXit + ϵit+1,

where rit+1 is excess return of stock i in month t + 1 in annualized percentage point, AI beta is AI beta of stock i
in month t constructed from rolling regression of daily stock returns onto daily AI index over a rolling three-month
window, and Xit is a set of control variables of stock i in month t: market equity (mve), book-market (bm), market
beta (beta), momentum (mom12m), standard deviation of daily returns from previous month (retvol), return on
equity (roeq), gross profit divided total asset (gma), leverage (lev), two-year percent change in capital expenditures
(grcapx), R&D divided by sales (rd sale), annual change in investment (invest), industry sales concentration (herf),
and sales growth (sgr). Every month, all independent variables are ranked and rescaled to fall from -0.5 to 0.5.
Reported are time-series averages of λt and γt with their t-statistics corrected for Newey-West standard errors with
six lags in parentheses. Panel A reports results for all stocks; Panel B (C) reports results for stocks below (above)
the 50th percentile NYSE market value break point. The sample is from 1985 to 2020.

Panel A: All Stocks Panel B: Small Stocks Panel C: Big Stocks
(1) (2) (3) (1) (2) (3) (1) (2) (3)

AI beta 2.17 2.31 2.92 2.57 2.91 3.79 -0.09 -1.60 -2.14
(2.19) (2.54) (2.50) (2.45) (3.01) (2.93) (-0.05) (-1.16) (-1.31)

mve -16.09 -15.16 -21.13 -19.05 -8.24 -10.71
(-4.88) (-3.92) (-4.70) (-3.84) (-1.04) (-1.24)

bm 1.51 5.88 2.11 6.81 -1.13 4.09
(0.51) (2.34) (0.70) (2.57) (-0.37) (1.38)

beta 5.49 1.92 7.45 3.32 1.32 -1.14
(1.49) (0.59) (1.90) (0.97) (0.32) (-0.30)

mom12m 7.21 2.68 7.72 2.34 7.27 5.92
(1.99) (0.78) (2.17) (0.67) (1.76) (1.66)

invest -8.36 -6.22 -9.17 -7.61 -3.12 0.04
(-5.57) (-4.67) (-5.63) (-5.00) (-2.43) (0.02)

roeq 6.87 7.75 7.30 8.40 3.61 4.26
(3.11) (4.73) (3.00) (4.65) (1.91) (2.20)

retvol -5.24 -5.46 -5.03 -5.57 -6.18 -4.67
(-1.91) (-2.01) (-1.78) (-2.02) (-2.04) (-1.67)

gma 7.36 7.36 6.01
(3.15) (2.91) (1.93)

lev 8.01 8.41 3.48
(2.66) (2.56) (1.16)

grcapx -3.01 -2.53 -4.22
(-2.54) (-1.98) (-2.42)

rd sale 15.95 16.96 8.80
(4.21) (4.28) (2.42)

herf -0.59 -0.86 -0.33
(-0.35) (-0.44) (-0.20)

sgr -1.76 -1.94 1.94
(-1.42) (-1.41) (0.90)

Intercept 11.98 12.34 15.39 12.58 11.41 14.68 9.99 10.60 14.02
(3.43) (3.56) (3.88) (3.34) (3.36) (3.72) (3.66) (2.36) (2.66)

R2(%) 0.05 4.08 4.67 0.05 3.67 4.07 0.29 10.06 12.19
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Table A.3

Predicting Next One-Month Returns:
One-Month Construction Window

This table report factor risk premia estimated via Fama-Macbeth regressions. Every month, we run the following
cross-sectional regression:

rit+1 = at + λt ×AI betait + γ
′
tXit + ϵit+1,

where rit+1 is excess return of stock i in month t + 1 in annualized percentage point, AI beta is AI beta of stock i
in month t constructed from rolling regression of daily stock returns onto daily AI index over a rolling one-month
window, and Xit is a set of control variables of stock i in month t: market equity (mve), book-market (bm), market
beta (beta), momentum (mom12m), standard deviation of daily returns from previous month (retvol), return on
equity (roeq), gross profit divided total asset (gma), leverage (lev), two-year percent change in capital expenditures
(grcapx), R&D divided by sales (rd sale), annual change in investment (invest), industry sales concentration (herf),
and sales growth (sgr). Every month, all independent variables are ranked and rescaled to fall from -0.5 to 0.5.
Reported are time-series averages of λt and γt with their t-statistics corrected for Newey-West standard errors with
six lags in parentheses. Panel A reports results for all stocks; Panel B (C) reports results for stocks below (above)
the 50th percentile NYSE market value break point. The sample is from 1985 to 2020.

Panel A: All Stocks Panel B: Small Stocks Panel C: Big Stocks
(1) (2) (3) (1) (2) (3) (1) (2) (3)

AI beta 3.95 2.85 3.60 4.22 2.99 4.18 3.13 1.07 -1.08
(2.38) (2.29) (2.75) (2.55) (2.39) (3.13) (1.11) (0.65) (-0.56)

mve -16.19 -15.20 -21.27 -19.09 -7.58 -10.08
(-4.91) (-3.91) (-4.75) (-3.85) (-0.96) (-1.19)

bm 1.46 5.86 2.05 6.79 -0.87 4.03
(0.49) (2.33) (0.68) (2.56) (-0.28) (1.36)

beta 5.51 2.06 7.44 3.45 1.65 -0.71
(1.49) (0.63) (1.89) (1.00) (0.40) (-0.19)

mom12m 7.52 2.97 8.00 2.62 7.72 6.48
(2.09) (0.87) (2.27) (0.76) (1.88) (1.81)

invest -8.33 -6.37 -9.19 -7.85 -3.04 0.26
(-5.53) (-4.78) (-5.60) (-5.16) (-2.40) (0.14)

roeq 6.81 7.62 7.25 8.28 3.64 4.42
(3.09) (4.65) (2.98) (4.57) (1.93) (2.24)

retvol -5.13 -5.36 -5.01 -5.57 -5.92 -4.36
(-1.88) (-2.00) (-1.78) (-2.03) (-1.99) (-1.59)

gma 7.42 7.42 5.90
(3.17) (2.94) (1.90)

lev 7.95 8.37 3.91
(2.63) (2.54) (1.31)

grcapx -3.05 -2.59 -4.44
(-2.56) (-2.02) (-2.55)

rd sale 15.93 16.90 8.86
(4.21) (4.28) (2.44)

herf -0.57 -0.84 -0.62
(-0.34) (-0.44) (-0.39)

sgr -1.67 -1.84 1.94
(-1.34) (-1.34) (0.90)

Intercept 11.98 12.34 15.36 12.57 11.41 14.65 10.03 10.29 13.79
(3.43) (3.56) (3.87) (3.33) (3.36) (3.71) (3.73) (2.27) (2.61)

R2(%) 0.15 4.10 4.67 0.13 3.68 4.07 0.87 10.10 12.18

3


	Introduction
	Construction of News-Based AI Index
	Data
	Method

	Construction of Firm AIness
	Construction
	Characteristics

	Prediction Results
	Predicting Next One-Month Returns
	Predicting Next Twelve-Month Returns
	Predicting Financial Performance

	Portfolio Sorts
	Portfolios Sorted on AI Beta
	Portfolios Double-Sorted on Size and AI Beta

	Discussion and Possible Consequences
	ChatGPT and Large Language Models
	AI-frenzy in Pre-IPO private investments
	Similarity to the 2001 Dotcom Boom

	Conclusion
	Appendices
	Appendix
	Additional Tables

