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ABSTRACT
Understanding non-linear relationships among financial instru-
ments has various applications in investment processes ranging
from risk management, portfolio construction and trading strate-
gies. Here, we focus on interconnectedness among stocks based
on their correlation matrix which we represent as a network with
the nodes representing individual stocks and the weighted links
between pairs of nodes representing the corresponding pair-wise
correlation coefficients. The traditional network science techniques,
which are extensively utilized in financial literature, require hand-
crafted features such as centrality measures to understand such
correlation networks. However, manually enlisting all such hand-
crafted features may quickly turn out to be a daunting task. Instead,
we propose a new approach for studying nuances and relationships
within the correlation network in an algorithmic way using a graph
machine learning algorithm called Node2Vec. In particular, the algo-
rithm compresses the network into a lower dimensional continuous
space, called an embedding, where pairs of nodes that are identified
as similar by the algorithm are placed closer to each other. By using
log returns of S&P 500 stock data, we show that our proposed algo-
rithm can learn such an embedding from its correlation network.
We define various domain specific quantitative (and objective) and
qualitative metrics that are inspired by metrics used in the field of
Natural Language Processing (NLP) to evaluate the embeddings
in order to identify the optimal one. Further, we discuss various
applications of the embeddings in investment management.
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1 INTRODUCTION
In the financial domain, it is not only intuitively appreciated that
financial systems are intricately connected with each other but the
interconnectedness among financial entities such as assets, banks,
managers (fund managers as well as higher management of compa-
nies), etc. have also been extensively investigated using network
science approaches[1, 2]. In such a financial network, the nodes
represent the financial entities and links between pairs of nodes
represent a well-defined relation such as cash flows, holdings of
shares, or financial exposures between them. The financial networks
may come in various flavors ranging from regular unweighted,

undirected, weighted, directed, bi-directed, bipartite, multi-graph,
multiplex, bipartite, dynamic (time-dependent), etc.[3].

The applications of network science in asset management indus-
try include understanding the effect of a potential price fluctuation
in a specific sector or stock price on a fund universe where all
the funds and their underlying holdings form a bipartite network;
modeling systematic risk and risk propagation among funds, for
example, to understand how selling a subset of assets from one of
the funds affects the liquidity of other portfolios; in constructing
various portfolio diversification measures for a fund or for a fund
of funds; stock selection to construct diversified portfolios, etc. (see,
e.g., [4–11])

Of particular interest to the present work is networks of cor-
relations among financial assets. Correlation matrices have been
one of the most studied objects in finance as their role in portfolio
construction [12], in capital asset pricing model [13], factor analysis
[14], etc. Correlation matrices of financial assets, especially stock
correlation matrices, where each node corresponds to an individual
stock and the link between each pair of stocks is the corresponding
correlation, have been extensively investigated in the literature
[10, 15–19].

Most of the aforementioned research, however, primarily relies
on the computation of statistical properties [20] of networks such
as degree centrality, closeness centrality, eigenvector centrality,
average shortest path, clustering coefficient, to name a few. Net-
work properties such as these arrive in various flavors and can
be computed using a weighted or unweighted network, a directed
or undirected network and so on. In such cases, it can become a
manual exercise for a researcher to create features that capture
relationships between the nodes of a network which can be further
used in downstream applications.

1.1 Our Contributions and Previous Works
In the present work, we propose a machine learning (ML) based
algorithm to learn a low-dimensional representation, called em-
bedding, of the stock correlation network. Learning embeddings
is a common task in Natural Language Processing (NLP) where
words are represented by vectors in an abstract low dimensional
manifold [21, 22]. Here, semantically similar words are identified
from the given corpus of text and placed together in the mani-
fold. We then use correlation matrix of log returns of the S&P 500
stocks, represent it as a network and then apply Node2Vec [23]
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to create sentence like structures (i.e., directed subnetworks) by
generating multiple random walks from each node. Then, we use a
word embedding algorithm called Word2Vec [21] to learn the em-
bedding from the generated data. We also propose several domain
specific metrics to directly evaluate the embeddings rather than
through downstream tasks unlike most other works in this area: we
evaluated the stock embeddings by tuning hyperparamters by opti-
mizing the V-measure between the clusters in the embedding and
Global Industry Classification Standard (GICS) categories. We also
used stock similarity and analogical inference of stocks as further
qualitative evaluation metrics of the embeddings.

There has been extensive research making use of graph ML
to learn stock embeddings in the literature [2]. However, in all
the existing research, the respective embeddings are learned by
tuning hyperparameters based on a downstream task. e.g., one
of the closest works to the present work is Ref. [24] where the
authors optimized stock embeddings to rank stocks according to
the predicted return by using Node2Vec where the hyperparameters
of Node2Vec were tuned on a downstream stock ranking prediction
task. Moreover, our goal is not to rank stocks rather to identify
similarity.

Ref. [25] have used a deep neural network framework to predict
stock price trends using transaction records and public market in-
formation. Ref. [26] whose goal was to predict stock prices learned
stock embeddings as a by-product of a trained temporal convolu-
tional network using time-series data for S&P 500 stocks. Since
they posed it as a supervised forecasting task, the hyperparameters
were tuned using regression metrics such as root mean squared
error and mean absolute percentage error. Ref. [27] used S&P 500
stock price as well as daily trading information including trading
date, opening price, highest price, lowest price, closing price, the
number of shares traded, and company stock names for computing
stock embeddings using Word2Vec and evaluated the embeddings
based on their performance on a downstream task, i.e., by using
Word2Vec embeddings on four classifiers (Gaussian Naive Bayes,
Support Vector Machines, Decision Tree and the Random Forest).
Then, if one of these classifiers achieves a higher accuracy to pre-
dict the stocks’ industry sectors with the Word2Vec embedding
at a given dimensionality, they reasoned that the Word2Vec em-
bedding with that dimensionality can better represent the original
data. Along the same lines, and again closer to the present work,
Ref. [28] constructed context-target stocks data based on closest
stocks in terms of their returns to the target stocks before training
stock embeddings using Word2Vec. Then, they used a classification
model with embeddings as input and industry sector as the output
to evaluate embeddings.

In our approach, we do not rely on another classifier on top of
our embedding unlike [27], and we also keep the learning task as
an unsupervised one unlike [24].

Some of the other relevant works which have attempted to learn
stock embeddings but use alternative data are as follows: in Ref. [29],
stock embeddings were computed using stock news and sentiment
dictionaries to predict stock trends. Ref. [30] utilized co-occurence
matrix of stocks mentioned in news articles and truncated singu-
lar value decomposition approach from GloVe algorithm [22] to
compute stock embeddings.

To summarize, in addition to a novel way of viewing the cor-
relation network as text data and then applying word embedding
model, the present work proposes an objective metric to directly
evaluate embeddings and in turn tune hyperparameters based on
three increasingly granular levels of GICS classifications. Once the
embedding is learned at an optimal hyperparameter point, the em-
bedding can then be used to determine stock similarity as well as
for analogical inference among stocks which are directly anchored
to the GICS classifications.

2 DATA PREPROCESSING AND NETWORK
STATISTICS

For the purpose of this work, we rely on the publicly available
returns data for S&P 500 stocks for the year 2021. In this Section, we
provide details of data preprocessing and the process of constructing
a filtered network out of the correlation matrix.

2.1 Data Preprocessing
2.1.1 Data Cleaning. We web scrapped S&P 500 wikipedia page to
get a list of tickers that constitutes S&P 500 index. We used yahoo
finance, a publicly available data source, to collect price data for
these tickers. Price data is collected for the entire year of 2021 which
includes 504 common stocks issued by 500 companies. We used end
of day adjusted close prices of these stocks for this analysis. There
are no missing data in adjusted close price as no stock was added
in or removed from the index in 2021.

2.1.2 Building a Network of Stocks. To create an undirectedweighted
network for the S&P 500 universe, we use a widely adopted tech-
nique popularized in Ref. [15]: each node of the network represents
a stock, the link between the nodes corresponds to whether the
pair of stocks is correlated to each other, and the weight on the link
corresponds to the actual correlation of the log returns of the pair
of stocks. Here, for the 𝑖-th stock, the log returns are calculated
using daily adjusted close prices as

𝑟𝑖 (𝑡) = log 𝑃𝑖 (𝑡) − log 𝑃𝑖 (𝑡 − 1),

where 𝑃𝑖 (𝑡) denotes the daily closing price of the 𝑖-th stock at the
𝑡-th day and 𝑟𝑖 (𝑡) denotes the return of the 𝑖-th stock at the 𝑡-th
day.

Then, the correlation, 𝜌𝑖 𝑗 , between the 𝑖-th and 𝑗-th stocks is
computed as

𝜌𝑖 𝑗 =

〈
𝑟𝑖𝑟 𝑗

〉
− ⟨𝑟𝑖 ⟩

〈
𝑟 𝑗
〉√︂(〈

𝑟2
𝑖

〉
− ⟨𝑟𝑖 ⟩2

) (〈
𝑟2
𝑗

〉
−
〈
𝑟 𝑗
〉2) .

Here, 𝑖 and 𝑗 runs from 1, . . . , 𝑛, where 𝑛 is the total number of
stocks. From the correlation matrix 𝜌 one can construct a fully con-
nected network from the correlation matrix as depicted in Figure
1. Ideally, analysing the weighted fully connected network may
provide complete information about the underlying relationship
among the stocks. However, traditionally most of the network quan-
tities are analyzed for sparse networks as most real world networks
are sparse [20]. Moreover, computational complexities to compute
network quantities increases for denser networks and may be the
worst for complete networks. Hence, the next step in the present
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Figure 1: Network of correlations of S&P 500 stocks based
on their log returns. Here, each node is a stock and the edge
between them is weighted as 𝜌𝑖 𝑗 , hence the network is a
weighted fully connected network.

work is to algorithmically sparsify the complete network, however
we plan to investigate complete networks in the future.

To sparsify a givenweighted fully connected network by identify-
ing and removing ‘unimportant’ links, there are various algorithms
that can be used such as Minimum Spanning Tree (MST) [15], Av-
erage Linkage Minimum Spanning Tree [31], Planar Maximally
Filtered Graph [32], etc. Traditionally, a popular choice to learn
correlation networks in finance is MST. However, MST works in an
inverse way than preferred in our case: for a weighted complete net-
work, MST preserves those links of the network which can be used
to traverse the entire network with minimum distance, whereas in
the stock correlation network the links with low correlations are
intuitively less important and hence should be removed.

To resolve this technical issue, i.e., to filter the fully-connected
graph while preserving links with high correlation, we first convert
the correlation matrix to a distance matrix where distance between
pair of stocks 𝑖 and 𝑗 is computed as

𝑑𝑖 𝑗 =

√︃
2(1 − 𝜌𝑖 𝑗 ) .

Applying MST on the distance matrix, 𝑑 , removes edges which
have high distance (low correlation). Then the edges of the filtered
distance network are replaced with their corresponding correlation
coefficients to obtain a filtered correlation network. Figure 2 shows
the sparsified network of correlations of log returns of S&P 500
stocks using MST.

In summary, after applying MST algorithm we obtain a sparse
weighted network of S&P 500 stocks which we can begin to analyze
using network science techniques.

Figure 2: Network after applying MST algorithm.

Unweighted Quantity Value
Number of Nodes 504
Number of Links 503
Average Degree 2
Diameter of the network 36
Average shortest path 13.97

Table 1: Unweighted network quantities for the stock net-
work.

2.2 Network Statistics
Here, we provide details of certain network quantities as a warm up
to the graph machine learning based analysis. We start by providing
basic summary statistics for the filtered network.

2.2.1 Computational Details. In the present work, we have used
NetworkX [33] library in Python to compute network statistics and
apply MST on the stock network and StellarGraph [34] and Gensim
[35] library to apply Node2Vec and Word2Vec respectively.

2.2.2 Basic Network Statistics. Before delving into the ML algo-
rithm, we briefly provide details on the basic statistics. The statistics
are summarized in Table 1 for the final filtered weighted network.
Here, the degree of a node is the number of links from a node, the
shortest path between a pair of nodes is the path on the network
between the given pair of nodes that has the shortest weighted
path-length, and the diameter of the network is the longest shortest
path-length in the network.

3 METHODOLOGY
One can resort to the above weighted network quantities to com-
pute similarity among nodes of a network. However, manually
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enlisting all possible network quantities is a prohibitively difficult
task. Instead, we propose an ML based approach to learn an em-
bedded representation of the network data such that similar nodes
are placed together in a lower dimensional manifold. Such a rep-
resentation is learned directly from the raw network data rather
than non-linearity supplied explicitly. In the following, we will also
describe additional advantages of learning such a representation.
Below, however, we begin by explaining the specific algorithm used
in the present work, called Node2Vec.

Node2Vec [23] is one of the most popular algorithms used to
learn lower dimensional representation for nodes in graph. In
Node2Vec, we learn a mapping of nodes to a low-dimensional space
of features that maximizes the likelihood of preserving the network
neighborhoods of nodes. In this paper, we use Node2Vec to cre-
ate sentence-like structures from a given weighted network using
a second-order random biased walk. Then, we construct a set of
context stocks and target stocks using a moving window using the
Word2Vec algorithm. Below we briefly explain both Word2Vec and
Node2Vec.

3.1 Embedding Learning
We begin to explain our ML methodology by first briefly describing
the Word2Vec algorithm. Word2Vec was developed in Ref. [21]
and is one of the most widely used word embedding techniques
in natural language processing (NLP). Traditional approaches of
feature extraction such as bag-of-words, tf-idf, one-hot-encoding,
do not capture the semantic similarities among words. Word2Vec
overcomes this problem by constructing a lower dimensional rep-
resentation that captures meaningful semantic and syntactic rela-
tionships between words in the corpus. Here, one trains a shallow
neural network to predict the target word provided a set of context
words byminimizing categorical cross entropy loss. Once the neural
network is trained, word embeddings are computed as average of
the weight matrices obtained from the hidden layer and the output
layer, respectively. Here, the word embeddings are obtained as a
by-product of the model training process where the target word is
predicted for a set of context words. Word2Vec uses one of the two
architectures, namely Continuous Bag-of-Words (CBOW) (where the
surrounding context words are used to predict the target word) or
Skip-gram (where the target word is fed as input and the context
or surrounding words is generated as the output) model to create
word embeddings.

Since a corpus of sentence-like structures is required to learn
stock embeddings using Word2Vec, to generate such structures
from the available static weighted network of stock correlations,
we make use of the Node2Vec [23] algorithm: the algorithm samples
a set of random walks of specific length starting from each node of
the given network. The set of nodes in the network is considered
as the vocabulary and the directed path of each random walk is
considered as a sentence. This corpus of sentence-like structures
can then be fed into Word2Vec to obtain the desired embedding. In
short, stock embeddings are then learned usingWord2Vec algorithm
applied to the set of weighted biased random walks performed over
the network (see Table 2 for an example dataset to be fed into
Word2Vec).

Context Stocks Target Stock
A, ALGN, NOW, ETR TGT
ALGN, TGT, ETR, ROL NOW
IR, NSC, GNRC, HOLX GPN
NSC, GPN, HOLX, PTC GNRC

A, ICE, SYF, WAB OKE
ICE, OKE, WAB, DG SYF

Table 2: An example of training data generated using
Node2Vec out of the filtered network to be fed into the
Word2Vec algorithm.

3.2 Hyperparameters
It has been shown that tuning of the hyperparameters for both
Node2Vec[36] and Word2Vec [37] is crucial to obtain robust em-
beddings.

The following hyperparameters have to be tuned in order to
create the required corpus of sentence-like structures from the
filtered network using Node2Vec: the number of random walks 𝑟
from each node in the network; the length for each random walk
𝑙 from each node in the network; the probability 𝑝 with which a
random walk will return to the node it visited previously; and, the
probability𝑞 with which a randomwalk will explore the unexplored
part of the graph.

Word2Vec algorithm has the following hyperparameters which
have to be tuned in order to quantitatively evaluate the strength of
the embeddings generated:

(1) Window size, 𝑤 : maximum distance between the current
and predicted word within a sentence;

(2) Vector size, dim: the dimensionality of the word vectors.

4 EVALUATION METRICS
By definition, there may not be any objective metrics to evaluate
or compare the final results when the learning task is performed
in a genuinely unsupervised fashion such as the problem at hand
[38, 39].

To come upwithmetrics to evaluate embeddings for our problem,
we resort to NLP for inspiration. Refs. [40, 41] categorize various
metrics used to evaluate word embeddings (same as for other unsu-
pervised tasks based on tabular data) into two broad types: extrinsic
evaluators and intrinsic evaluators.
Extrinsic Evaluators: The extrinsic evaluators measure the per-
formance of the embeddings based on downstream tasks where
there may be ground truth labels available, for example in text sum-
marization, grammar tagging, named entity recognition, sentiment
analysis, etc.
Intrinsic Evaluators: The intrinsic evaluators directly measure
syntactic or semantic relationships between words, i.e., test the
quality of representations independent of specific NLP tasks. Some
examples of intrinsic evaluators would be comparing similarity
between words as given by, say, cosine similarity in the embedding
space with similar words as perceived by humans; word analogy;
concept categorization; etc.

A rigorous translation between the evaluation metrics for word
embeddings to evaluation metrics for network embeddings is yet to
be performed. Moreover, the corresponding datasets with ground
truths that exist in the NLP domain (e.g., a list of words and their
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similar words as tagged by humans such as ones in Refs. [42–44])
are not available in the stock networks. Hence, in the present work
we take a pragmatic approach where we propose two types of
evaluation metrics: a quantitative metric (or an extrinsic metric)
using which we perform the hyperparmeter optimization, and a few
qualitative metrics (intrinsic metrics) for which we may not have
objective ground truth but may match with the common wisdom
of a trader or portfolio manager.

4.1 Quantitative Evaluation of the Embeddings
Though there are no ground truth labels available for the stock
network data that can be used to compute the embeddings for our
purposes, there are industry classifications of stocks provided by
the Global Industry Classification Standard (GICS) [45]. GICS is a
third-party provided classification system that classifies all major
companies into coarse to granular categories starting from sectors
(the coarsest) to industry groups, industry sub-groups, etc. (we
call them GICS categories). In particular, all the S&P 500 stocks
are assigned a unique value (we call this a class in the remainder
of the paper) for sector, industry group, industry sub-group, etc.
GICS categories are widely used in investment processes for vari-
ous purposes ranging from risk management (peer analysis), risk
factor analysis, thematic investments, etc. These categories also
play crucial role in mutual fund categorizations. For the purpose
of the present work, we only focus on the first three levels of the
classifications.

In general, stocks from the same class should be highly correlated
as opposed to stocks from different classes. Hence, a good embed-
ding learned using Node2Vec methodology should place stocks
from the same class (e.g., financial sector) closer to each other in
the embedded space. In turn, if we perform clustering, for example
using K-means clustering [46], with K being the same number as
the number of classes in the chosen category, then all the K clusters
should map back to the classes of the category, i.e., each cluster
should only have the stocks of one and only one class.

To evaluate the mapping between the K clusters in the given
embedded space and the classes, we can employ an external entropy
based cluster validation technique called V-measure. This metric
is independent of the absolute values of the labels, i.e, a permuta-
tion of the class or cluster label values does not change V-measure.
Additionally, this metric is symmetric, i.e., swapping labels with
predictions returns the same score, which can be useful to measure
the agreement of two independent label assignment strategies on
the same dataset where the ground truth is unknown.

The V-measure is defined as the following harmonic mean[47]:

V-measure =
(1 + 𝛽) (Homogeneity) (Completeness)
(𝛽 × Homogeneity + Completeness)

Here, when each of the clusters only contains data points which
are members of a single ground truth class, the clustering is called
homogeneous, otherwise it is called a heterogeneous cluster. Com-
pleteness is defined as the measure of a cluster when a cluster
contains all the elements of a class, as opposed to a cluster that fails
to capture one or more elements of a class. 𝛽 denotes the ratio of
weight attributed to homogeneity versus completeness and we use
the default value of 1.

In summary, for a learned embedding (i.e., after training the
embedding algorithm at a given hyperparameter point), we first
perform K-means clustering, and then compute the V-measure be-
tween the K clusters and each of the three GICS categories. The
larger the V-measure for a hyperparameter point, the better the
embedding, and the hyperparameters of Section 3.2 algorithm were
tuned to maximize V-measure.

4.2 Qualitative Evaluations
We use two qualitative evaluations methods here borrowed from
word embedding evaluation methods: stock similarity and analogi-
cal inference for stocks.

4.2.1 Stock Similarity. In the filtered network, not all stocks are
connected to all other stocks, but an embedded representation of the
network is an abstract and continuous space where we can compute
distance from any stock to any other stock. This means that for
every stock we can identify similar stocks and rank them according
to the chosen distance metric, even for the pairs of stocks which
were not directly connected in the original network. Similarities
from the embeddings are generated by computing pairwise cosine
distance between embedding vectors for the S&P 500 universe. The
cosine distance between each pair of data-points is defined as:

𝑑cos𝑖 𝑗 = 1 −
x𝑖 · x𝑗

∥x𝑖 ∥
x𝑗  ,

where x𝑖 and x𝑗 are vector embeddings for the 𝑖-th and 𝑗-th stocks,
respectively.

Unlike the word embedding evaluations where the modeler may
have access to publicly available similarity datasets such as SimVerb-
3500 [43] or MEN [42] (although, strictly speaking, these lists may
also have subjectivity built-in), there does not exist such standards
for the S&P 500 dataset. Hence, in the present paper, we rely on
qualitative assessment of the list of similar stocks.

4.2.2 Analogical Inference. In NLP, once a word embedding is
learned from a text corpus, in addition to the word similarity, one
can also perform analogical inferences [48–50] within the embed-
ding space that captures arithmetic relationships between words.
Here, given a set of three words, a, b and c, the task is to identify
such word d for which the relation ‘c is similar to d’ is the same as
the relation ‘a is similar to b’. For instance, once a word embedding
is obtained, the classic example of "Man is to King as Woman is
to ?" may be solved by performing arithmetic operations on the
word vectors as vector("King")-vector("Man")+vector("Woman") to
produce a vector representation of the word "Queen". Eventually,
the results for such queries are evaluated by human experts. There
are a few publicly available benchmark datasets [21, 48, 51, 52]
which provide some ground truths to such problems in the NLP
area.

For embedded representation learned for the stock network data,
such operations between stock vectors can also be used for making
analogical inferences, for example, "JPM is to GS as JNJ is to ?"
produces a vector that is close to the vector representation of AMGN.
Here again, there does not exist any benchmark analogical inference
related datasets for stocks, and for the purpose of the present work
we rely on qualitative evaluation of the results.
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5 EXPERIMENTS AND RESULTS
In this Section, we present our results from our experiments follow-
ing the methodology described in the previous Section. We start
by describing results from quantitative evaluation from which we
identify the optimal hyperparameter point. We also show a visual-
ization of the embedded space in passing. Then, we provide results
of various qualitative evaluations.

5.1 Quantitative Evaluation
Table 3 shows the results for hyperparameter scan over various
values for 𝑙 , 𝑟 , 𝑝 , 𝑞,𝑤 and dim. For each hyperparameter point, we
learned the corresponding embedded space and then ran K-means
clustering where K= 9, 59 and 169, for GICS Industry Sector, Indus-
try Group and Industry Sub-group, respectively, corresponding to
as many classes in each of the GICS categories. In the Table, we
record the V-measure for each of the categories in separate columns,
and the average of the V-measures across the three categories.

As the GICS classification becomes more granular, the V-measure
increases, which means that the stocks tend to be more closely
related among each other. The average of the V-measures over all
three categories is used as a tie-breaker to identify the optimal
hyperparameter point, meaning that we prefer an embedding in
which on average all levels of GICS classification are clustered well.
The emboldened hyperparameter point in the table is chosen as
the optimal point and the corresponding embedding is used in the
remaining computations.

𝑙 𝑟 𝑝 𝑞 𝑤 dim Sector Group Subgroup Average
50 10 0.5 2 5 16 0.28 0.67 0.85 0.60
100 10 0.5 2 5 16 0.3 0.68 0.85 0.61
100 10 0.5 2 5 32 0.25 0.68 0.85 0.59
100 10 0.5 2 5 64 0.29 0.68 0.85 0.61
100 10 0.5 2 5 128 0.24 0.69 0.85 0.59
100 10 0.5 2 5 16 0.26 0.58 0.77 0.54
100 50 0.5 0.2 5 16 0.32 0.68 0.84 0.61
100 50 0.5 2 5 16 0.32 0.68 0.84 0.61
100 50 2 0.5 5 16 0.35 0.7 0.84 0.63
100 50 2 0.5 10 16 0.34 0.69 0.85 0.63
100 50 2 0.5 20 16 0.35 0.68 0.85 0.63
100 100 2 0.5 10 16 0.32 0.68 0.85 0.62
100 100 2 0.5 20 16 0.35 0.69 0.85 0.63
100 100 2 0.5 5 16 0.34 0.68 0.84 0.62
100 100 0.5 2 5 16 0.26 0.67 0.85 0.59
200 10 0.5 2 5 32 0.24 0.68 0.85 0.59
200 10 2 0.5 5 32 0.35 0.67 0.84 0.62
200 50 2 0.5 5 32 0.31 0.69 0.84 0.61

Table 3: Effect of various hyperparameter combinations on
V-measure value across GICS Industry sector, group and sub-
group categories as labels.

5.2 Visualization of Embeddings
Figure 3 shows a 3-dimensional visualization, using the dimen-
sionality reduction technique called principal component analysis
(PCA), of the 16-dimensional stock embeddings. Here, we plot the
query stock JPM and its nearest stocks in the 16-dimensional em-
bedding space.

Figure 3: A 3-dimensional visualization of the 16-
dimensional embedding. The plot shows a specific stock and
its nearest neighbors in the lower dimensional embedding.

5.3 Qualitative Evaluation
We discuss results for the two qualitative evaluations: stock simi-
larity and analogical inference for stocks.

5.3.1 Stock Similarity. Table 4 shows the results for top 10 stocks
most similar to JPM sorted according to their cosine similarity
scores in the embedded space. First, notice that all the 10 similar
stocks belong to the same GICS sector as JPM even in cases where
there were no direct links between them in the original filtered
network, i.e., they may not be directly correlated. All the 10 stocks
indeed are those of either another bank or an asset manager. Upon
checking many other examples, qualitatively the embedding indeed
provides similarities from financial domain point of view.

Most Similar Similarity Score Industry Sector
GS 0.928 Financial
BAC 0.925 Financial
MS 0.901 Financial
C 0.897 Financial

SCHW 0.857 Financial
TFC 0.806 Financial
RJF 0.769 Financial
USB 0.729 Financial
NTRS 0.725 Financial
WFC 0.666 Financial

Table 4: Top 10 most similar stocks to JPM from the embed-
ding.
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5.3.2 Analogical Inference of Stocks. In Table 5, we provide ex-
amples of analogical inference for domain experts to qualitatively
evaluate the embedding.

Analogy Similarity
JPM is to GS as MSFT is to GOOGL 0.882
JPM is to GS as JNJ is to AMGN 0.837

Table 5: Analogical inferences for JPM

We go beyond the simple analogical inference and show results
for more complex queries in Table 6. Here, we have a set of four
stocks - JPM, MS, GS and GOOGL where GOOGL does not match
with the remaining three stocks as JPM, MS and GS belong to the
financial sector whereas GOOGL belongs to technology sector as
per the GICS Sector classification. The embeddings could make
the distinction between stocks in different sectors, although this
information was not explicitly supplied to the algorithm. In the
second example, JNJ, BMY and PFE belong to pharmaceutical sector
whereas HD belongs to consumer cyclical. Last example shows
TSLA to be the most dissimilar out of the given list which aligns
with intuition as TSLA belongs to consumer cyclical sector whereas
UAL, AAL and DAL belong to the consumer discretionary sector.

Analogy Does Not Match
Does not match from JPM, MS, GS, GOOGL GOOGL
Does not match from JNJ, BMY, PFE, HD HD
Does not match from UAL, AAL, DAL, TSLA TSLA

Table 6: Analogical inference to identify the stock that does
not belong to a given set.

Similarly, for example in Table 7, the embedding identifies FB as
the most similar stock to GOOGL from a given set of stocks which
includes JNJ, MS, MOS and FB, which aligns with intuition as JNJ
belongs to the pharmaceutical sector, MS belongs to financial sector
and MOS belongs to industrials sector.

Analogy Similar Stock
Most similar to GOOGL given JNJ, MS, MOS, FB FB
Most similar to BLK given TSLA, STT, JNJ, AAPL STT
Most similar to WMT given CVS, COST, JNJ, MSFT COST

Table 7: Analogical Inference to identify the most similar
stock from a set of stocks.

6 DISCUSSION AND CONCLUSION
The correlation matrix for stock returns data has been one of the
most extensively studied objects in finance. From the network sci-
ence point of view, the correlation matrix is usually transferred
to a network where stocks are treated as nodes and the correla-
tions between a pair of stocks are treated as edges. In the present
work, after applying MST algorithm to sparsify the network, we
use the Node2Vec algorithm to generate sentence-like structures

from the network by generating random walks of chosen length
from each node. Then, we applied a word embedding algorithm
called Word2Vec to compute an embedded representation of the
network.

We proposed an extrinsic (quantitative) evaluator based on GICS
Classification of companies to evaluate the embedded represen-
tations and performed hyperparameter optimization to obtain a
16-dimensional representation of the network data. In turn, the
algorithm is instructed to learn the embedding that anchors the
definition of similarity on the underlying definition of GICS classi-
fications. In other words, the learned manifold is not an arbitrary
representation of the network, rather has implicitly taken the defi-
nition of similarity as used by the GICS classification into account:
for a given stock under investigation, all the stocks within its GICS
class are similar to each other though there is no ranking (i.e., which
of the stocks in the class is more similar than the others) provided
by the classification system. The embedding, on the other hand,
provides such a ranking which is extracted from GICS labels.

We then evaluated the embedding at the optimal hyperparam-
eter point using qualitative metrics such as stock similarity and
analogical inference. The stock embeddings can be used in sev-
eral downstream tasks such as for building stock recommender
systems, performing analogical inferences, feature creation in link
prediction or node classification tasks in graph neural networks, etc.
The stock embedding is essentially a compressed 16-dimensional
representation of the 504 × 504 size correlation matrix which can
have multiple applications in portfolio construction as well as risk
management.

Another important application of the stock embedding which
we plan to explore further in the future is to use them as input
features to another ML model: traditionally, nominal categorical
variables are encoded as dummy variables, also known as one-hot
encoded vectors, which in the case of a stock universe will have a
high cardinality and hence drastically increases the dimensionality
of the feature space. Additionally, one-hot encoded representation
of stocks treats stocks as independent of one another and does not
take into consideration the interactions that may exist between
them. For example, similarity of stocks based on industry or sector
classifications and pair of stocks in one-hot encoded representations
are separated by a distance of

√
2 in the Euclidean space. Instead,

using the continuous stock embeddings as features can help ML
models with small datasets (i.e. even if a stock ticker is not present
at the time of training the model, it will be able to understand this
ticker from its embeddings).

Finally, as an example, we have analyzed stock correlation net-
works, but the present framework can also be applied to returns
correlation matrix for any other financial assets such as mutual
funds [53], hedge funds, corporate bonds, municipal bonds, etc.
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