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a b s t r a c t 

By applying machine learning to the accurate and cost-effective classification of photos 

based on sentiment, we introduce a daily market-level investor sentiment index (Photo 

Pessimism) obtained from a large sample of news photos. Consistent with behavioral mod- 

els, Photo Pessimism predicts market return reversals and trading volume. The relation is 

strongest among stocks with high limits to arbitrage and during periods of elevated fear. 

We examine whether Photo Pessimism and pessimism embedded in news text act as com- 

plements or substitutes for each other in predicting stock returns and find evidence that 

the two are substitutes. 
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A good sketch is better than a long speech. 

—– Napoleon Bonaparte 

1. Introduction 

Numerous studies document how investor sentiment 

helps researchers understand and predict market returns 

over time ( Hirshleifer and Shumway, 2003 ; Edmans et al., 

20 07 ; Tetlock, 20 07 ; Spiegel, 20 08 ; Cochrane, 2011 ) and 

stock returns cross-sectionally ( Baker and Wurgler, 2006 ; 

Kozak et al., 2018 ). In this study, we develop a daily 

market-level investor sentiment index (Photo Pessimism) 

from US news photos and study how visual content in 

news relates to financial markets. 

We make three key contributions to the literature. First, 

we demonstrate the importance of visual content in mak- 

ing predictions about market returns. We construct a daily 

https://doi.org/10.1016/j.jfineco.2021.06.002
http://www.ScienceDirect.com
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2021.06.002&domain=pdf
https://www.kuntara.net/
mailto:khaled.obaid@csueastbay.edu
mailto:pukthuanthongk@missouri.edu
https://doi.org/10.1016/j.jfineco.2021.06.002


K. Obaid and K. Pukthuanthong Journal of Financial Economics 144 (2022) 273–297 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 We collect photos from Getty Images between 1926 and 2018 and test 

how PhotoPes relates to market returns over long-horizons. We find our 

main premise holds. We report the results in the Internet Appendix and 

describe caveats. We make this longer series of daily data available at: 

https://www.kuntara.net/ . 
investor sentiment index, Photo Pessimism ( PhotoPes ), cal-

culated as the proportion of news photos predicted to be

negative on a given day. We observe that PhotoPes nega-

tively predicts the next day’s market returns and is posi-

tively related to market returns over the remaining trad-

ing week. This reversal highlights that our measure has a

non informational impact on returns. Consistent with an

investor sentiment proxy, we show that PhotoPes predicts

an increase in the next day’s trading volume and better

predicts returns on stocks with high compared to low lim-

its to arbitrage. 

Second, we demonstrate how to overcome key hur-

dles of studying the importance of visual content in fi-

nancial markets by employing machine learning techniques

for large-scale photo classification. Photojournalism has in-

creased in popularity due to modern technology and the

demand for quick information. In light of studies suggest-

ing that photos may convey emotional information more

effectively than words, we believe it is important to ex-

amine how sentiment extracted from photos in the news

media relates to market activities ( Chemtob et al., 1999 ).

However, because of the complexity of analyzing photos

and the cost of manually sifting through many photos, con-

ducting such a study is expensive, error prone, and tedious.

Relying on surveys or crowd-sourcing websites (e.g., Ama-

zon Mechanical Turk, MTurk) to evaluate photos has been

a mainstream method for extracting information from pho-

tos. In addition to the high cost, economists are cau-

tious about survey data as they can be subjective and not

verifiable by “objective external measurement” ( Vissing-

Jorgensen, 2003 ). Singer (2002) , for instance, documents

that survey respondents tend to have less incentive to an-

swer questions carefully and truthfully when the questions

are related to a sensitive subject and answers depend on

respondents’ perception. Our approach of using machine

learning mitigates this concern as sentiment embedded in

photos is uniformly extracted by a machine. To be specific,

we apply convolutional neural networks (CNNs), a machine

learning technique popular for classifying photos, to accu-

rately, verifiably, and cost effectively classify a large sample

of news photos based on sentiment. 

Third, we compare the predictive ability of PhotoPes and

pessimism embedded in news text. We show that pes-

simism embedded in news photos and pessimism embed-

ded in news text substitute for one another. Moreover,

we provide evidence suggesting that photos grab attention

away from text during periods when photos are salient.

Specifically, during periods when news photos are over-

whelmingly negative or positive, the pessimism in news

photos dominates. In contrast, during periods when news

photos are neutral or mixed, the pessimism embedded in

the text dominates. Tetlock (2007) and Garcia (2013) , for

example, measure investor sentiment by performing tex-

tual analysis on news; however, to the best of our knowl-

edge, no one has examined the possibility of capturing

useful and novel information about investors’ beliefs from

photos in news and how such information interacts with

the information embedded in text. 

Finance researchers have embraced the use of ma-

chine learning ( Mullainathan and Spiess, 2017 ). Machine

learning techniques are often used to classify textual con-
274 
tent. For instance, Manela and Moreira (2017) use ma- 

chine learning to construct a news implied volatility index 

from text in the Wall Street Journal (WSJ). Buehlmaier and 

Whited (2018) construct a measure of financial constraints 

by analyzing financial reports and show that their measure 

is related to access to capital and stock returns. Lately, as- 

set pricing researchers have applied machine learning to fi- 

nancial data to predict risk premiums ( Gu et al., 2020 ) and 

to search for true risk factors ( Feng et al., 2020 ). 

Recent developments in machine learning have intro- 

duced techniques that make the task of analyzing a large 

number of photos possible. In this study, we apply CNNs to 

construct an investor sentiment index from a large sample 

of news photos. In particular, we use a pretrained Google 

Inception (v3) model. Although the model is not specifi- 

cally trained to identify sentiment, it contains a lot of do- 

main knowledge on images. To tailor the model to classify 

the sentiment of photos, we use transfer learning (i.e., we 

feed the pretrained model a sample of additional training 

photos specifically labeled by sentiment and replace the fi- 

nal fully connected layer of the original model with a new 

layer containing only the two classes of interest: negative 

and positive sentiments). The model considers many as- 

pects of the photo, including objects, colors, and facial ex- 

pressions, to make predictions. After the model is trained, 

we verify its accuracy against a test sample. We achieve 

87.1% accuracy with our test sample. Next, we use the 

model to make investor sentiment predictions on photos 

from the WSJ. Using these sentiment predictions, we then 

construct a daily investor sentiment index, Photo Pessimism 

( PhotoPes ), calculated as the proportion of photos predicted 

to be negative on a given day. 

The photos we use in this study come from the WSJ 

Online Archive between September 2008 and September 

2020. Photos from this source allow us to focus on the 

most widely distributed news, which is the type of content 

that Shiller (2005) , Tetlock (2007) and Garcia (2013) argue 

can play an important role in financial markets. 1 

Through various tests, we show that PhotoPes exhibits 

characteristics of an investor sentiment proxy. First, we 

test how PhotoPes is related to major US equity indices 

and exchange-traded funds (ETFs). Behavioral models, such 

as De Long et al. (1990) , expect that investor sentiment 

should predict market return reversals. That is, when sen- 

timent is high (low), irrational investors will increase 

(decrease) their demand for assets driving up (down) 

prices away from fundamentals. Because of limits to ar- 

bitrage, the mispricing might not be corrected immedi- 

ately ( Pontiff, 1996 ; Shleifer and Vishny, 1997 ). However, 

over time, rational investors will take advantage of mis- 

pricing, leading prices to return to their fundamental lev- 

els. We observe that PhotoPes is negatively related to the 

next day’s market returns and positively related to mar- 

ket returns over the remaining trading week. This reversal 

highlights that our measure has a non informational im- 

https://www.kuntara.net/
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pact on returns. In terms of magnitude for the relation be-

tween PhotoPes and the next day’s market returns, the av-

erage impact of a one standard deviation shift in PhotoPes

on the CRSP value-weighted (VWRETD) index is 4.2 bps. A

trading strategy that takes advantage of the reversal pat-

tern for PhotoPes and pessimism embedded in news text

earns a 5.45% annual five-factor alpha. Overall, the results

are statistically and economically meaningful. 

Second, we show that PhotoPes and the pessimism

embedded in text ( TextPes ) are significantly correlated,

suggesting some commonalities in the type of infor-

mation both variables capture. Next, we examine how

pessimism embedded in photos and text interact. We

show that pessimism embedded in news photos and pes-

simism embedded in news text substitute for one an-

other. In addition, our evidence suggests that photos cap-

ture attention from text during periods when photos are

salient. 

Third, we strive to enhance our understanding of which

type of information is more effectively transmitted by pho-

tos in the context of news and financial markets. We find

that the coefficient for pessimism embedded in photos is

over two time larger during periods of elevated fear com-

pared to baseline periods, while the coefficient for TextPes

is roughly unchanged. This evidence is consistent with

photos being more effective at conveying traumatic news

compared to text ( Chemtob et al., 1999 ). The impact of

PhotoPes on market returns during high levels of fear is

most striking: the average impact of a one standard devi-

ation shift in PhotoPes during fear periods on the VWRETD

is 10.3 bps. 

Fourth, we further validate PhotoPes as a proxy for in-

vestor sentiment by showing it has a larger effect on stocks

that are difficult to arbitrage. Based on the prediction that

stocks that are expensive to arbitrage are most sensitive to

investor sentiment shocks ( Baker and Wurgler, 2006 ), we

construct portfolios based on firm idiosyncratic volatility

and size. We find that PhotoPes has the strongest effect on

the returns of the highest idiosyncratic volatility and the

smallest firm portfolios. In terms of magnitude, the aver-

age impact of a one standard deviation shift in PhotoPes on

the highest idiosyncratic volatility value-weighted quintile

portfolio is 7.1 bps. 

Fifth, we provide additional insights to help us better

understand the channel through which PhotoPes relates to

market returns. We find that high or low PhotoPes can pre-

dict an increase in the next day’s abnormal trading volume.

This evidence further validates that PhotoPes captures in-

vestor sentiment ( De Long et al., 1990 ). 

Finally, we perform a battery of robustness tests. Most

notably, we show that our main results are robust to dif-

ferent variable construction criteria and even after control-

ling for extreme returns. In addition, we show that Pho-

toPes generates a significant out-of-sample R -squared. 

Our paper is related to the literature on investor

sentiment. In light of the multidimensionality of in-

vestor sentiment, researchers have been looking for

different approaches to measure investor sentiment

( Zhou, 2018 ). For example, researchers have used news

( Tetlock, 2007 ), Google Search data ( Da et al., 2015 ),

Twitter data ( Chen et al., 2014 ), company financial reports
275 
( Loughran and McDonald, 2011 ; Jiang et al., 2019 ), weather 

( Hirshleifer and Shumway, 2003 ), and sporting events 

( Edmans et al., 2007 ) to proxy for investor sentiment 

( Hirshleifer, 2001 ). 

More specifically, our paper extends the literature on 

investor sentiment and news. News is a plausible proxy for 

investors’ beliefs because the press has demand-side incen- 

tive to cater content to their readers’ beliefs ( Shiller, 2005 ). 

Mullainathan and Shleifer (2005) summarize the com- 

munications, psychology, memory, and information pro- 

cessing literature that supports the notion that people 

receive utility from content consistent with their be- 

liefs. Gentzkow and Shapiro (2010) provide empirical ev- 

idence for this theory. Specifically, they show that me- 

dia slant is largely attributed to consumer preference. 

Tetlock (2007) and Garcia (2013) show that sentiment em- 

bedded in news text predicts market returns and trading 

volume. We extend this literature by revealing that news 

photos contain content relevant to financial markets. 

Our paper also extends the literature on the psychol- 

ogy of visual stimuli to an application in finance and eco- 

nomics. The evidence on visual stimuli in news is mixed. 

On the one hand the picture superiority effect, a known 

concept in psychology, is the phenomenon in which pic- 

tures are better recalled than words ( Nelson et al., 1976 ; 

Paivio, 1991 ). Newhagen and Reeves (1992) extend the pic- 

ture superiority effect to news media by finding that vi- 

sual content in news is better recalled than text content in 

news. Moreover, Garcia and Stark (1991) and Powell et al., 

(2015) find that images play an attention-grabbing role in 

news. On the other hand, researchers find that visual con- 

tent is most effective when the message is simple to un- 

derstand, whereas text is most effective when the mes- 

sage is complex ( Chaiken and Eagly, 1976 ). We reconcile 

these two strands of literature in the context of financial 

decision-making. 

Finally, our paper extends the literature on the value 

of visual content in predicting important outcomes in fi- 

nancial markets. Several studies document how a mere 

photo is able to predict important outcomes, such as po- 

litical elections, personal loan decisions, firm market value, 

and CEO compensation ( Todorov et al., 2005 ; Duarte et al., 

2012 ; Halford and Hsu, 2014 ; Graham et al., 2017 ). Re- 

cently, Bazley et al., (2021) document how displaying fi- 

nancial information in red reduces investors’ appetite for 

risk and optimism. Blankespoor et al., (2017) show how 

perceptions about management in video presentations re- 

late to firm value. To the best of our knowledge, we are the 

first to use machine learning to develop an investor senti- 

ment proxy from news photos to predict market returns. 

The rest of the paper is structured as follows. 

Section 2 describes the photo classification model, data, 

and key variables. Section 3 presents the empirical results. 

Section 4 concludes the paper. 

2. Data 

We begin this section by discussing the technology 

used to construct PhotoPes . Second, we discuss the sample 

of photos from the WSJ. Third, we review the descriptive 

statistics for PhotoPes and other key variables. 
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4 “Disease” and “crash,” for example, are clearly negative, but the de- 

gree of their negativity is less obvious. Context and an individual’s sub- 

jective interpretation of the word itself also affect the degree of negative 

sentiment. 
5 Deep Sent contains 1269 labeled photos available for download at: 

https://qzyou.github.io/#datasets . 
6 The process of verifying labels is an expensive and time-consuming 

task. However, not authenticating labels can lead to poorly performing 

models because the training data might be noisy, so we take the extra 
2.1. Photo classification 

Major advances in the field of computer vision enable

us to create reliable models for photo classification. Below,

we delve into some of the details about the sentiment pre-

diction model we utilize in this study. 

The main task of machine learning photo classifica-

tion models is to be able to identify the content of

the photo with minimal human involvement. CNNs are

a type of deep neural network that is useful for photo

classification ( Krizhevsky et al., 2012 ). Recent studies use

CNN photo classification models to identify solar panel

installations ( Yu et al., 2019 ), locations of slave camps

( Scoles, 2019 ), and poverty levels in underdeveloped coun-

tries ( Jean et al., 2016 ) by analyzing satellite images. Sim-

ilar to us, You et al. (2015) employ CNNs for image senti-

ment analysis and achieve high accuracy on photos in so-

cial media. 

For this study, we are interested in a model that is able

to predict sentiment that a photo is likely to elicit from

investors. We build a photo classification model based on

Google Inception (v3) ( Szegedy et al., 2016 ). Google Incep-

tion (v3) is a CNN model that performs very well at classi-

fying photos across 10 0 0 categories in the ImageNet aca-

demic competition, ILSVRC (ImageNet Large-Scale Visual

Recognition Challenge), and is widely used in practice and

research. 2 , 3 

TensorFlow, an open-source software library popular for

machine learning applications developed by the Google

Brain Team, provides a pretrained Google Inception (v3)

model. We start with a pretrained Google Inception (v3)

model (trained on the ImageNet data set) and use trans-

fer learning to fine-tune the model for our specific appli-

cation. The pretrained Google Inception (v3) has 10 0 0 dif-

ferent classes since it is trained for the purpose of ILSVRC.

Training photo classification models from scratch requires

a huge training sample and is computationally expensive.

For example, the pretrained Google Inception (v3) model

is trained on 1,331,167 prelabeled images. Transfer learn-

ing allows us to reuse the domain knowledge stored in the

pretrained model to ease the construction of our desired

model by replacing only the final fully connected layer

with a new layer that has the desired number of classes

( Yang et al., 2013 ) and retraining the parameters in the

final fully connected layer with a much smaller training

sample. The output we get from the fine-tuned model is

one of two probabilities: the probability that photos have

positive sentiment and the probability that photos have

negative sentiment. 

For the following reasons, we do not develop a more re-

fined classification model. First, having more refined classi-

fications requires subjective judgement. Most textual senti-
2 The top-five and top-one error rates on the validation set from the 

ImageNet data set are 3.5% and 17.3%, respectively. The top-one error rate 

is the percentage of time the model did not produce the correct class as 

its top prediction by probability. The top-five error rate is the percent- 

age of time the model did not produce the correct class as its top-five 

predictions by probability. 
3 The ImageNet data set is available for free download at: http:// 

image-net.org/download . 
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ment analyses, such as in Loughran and McDonald (2011) , 

generate binary classifications for words (e.g., positive and 

negative words). 4 Second, we attempt to create a photo 

classification model with finer classes, but we are not able 

to get such a model to converge. This is because the model 

could not detect a clear distinction between the various 

finer classes. 

To perform transfer learning, we need a training set 

that consists of photos labeled by sentiment. We use the 

DeepSent data set for training. 5 DeepSent is a collection 

of photos that are collected and labeled by sentiment 

by You et al., (2015) . The main advantage of using the 

DeepSent data set is that the sentiment labels are veri- 

fied via a crowd-sourcing website (e.g., MTurk) to ensure 

the correctness of the labels. 6 The DeepSent data set of- 

fers a choice to select photos that have three, four, or all 

five participants in the MTurk survey to agree on the sen- 

timent associated with the photo. For increased reliability, 

we use photos in which all five MTurk survey participants 

agree on the photo’s sentiment. This restriction reduces the 

training sample to 882 photos. 

The model is trained using a learning rate of 0.01 and 

500 learning steps. 7 We set the train batch size to 100 

photos. We reserve 10% of the training photos for the val- 

idation sample, and 20% for the test sample (photos are 

randomly assigned into these sets). 8 The training set is the 

set of photos used to adjust the weights in the final fully 

connected layer during the training process. The validation 

set is the set of photos not used to adjust the weights on 

the last fully connected layer, but their sole purpose is to 

help minimize overfitting by verifying that any increase in 

the training accuracy is not made at the expense of out-of- 

sample performance. Finally, the test set is a set of photos 

that is never seen by the model during the training process 

and that is used to compute a final accuracy score for the 

model. In addition to using a validation set to limit overfit- 

ting, we also enlarge the training set by using augmenta- 

tion techniques (e.g., flip, scale) and adding regularization 

techniques in the model like dropout and label smoothing 

( Szegedy et al., 2016 ). 

In Fig. 1 , we plot the training and validation accuracy 

over the training steps for the model. We achieve 87.1% test 
step of confirming the labels. 
7 The learning rate is the amount the weights in the model can change 

after each learning step. Learning steps refer to the number of time we 

pass our training set through our model. These are the common values 

used in the image classification applications of CNNs ( You et al., 2015 ). 
8 We avoid using a large proportion of our training sample for the test 

set to ensure that we have enough photos in the training set. Some vari- 

ation is present in the literature, but most studies assign the majority 

of the sample to the training set (usually between 70 and 80%), and the 

remainder is divided between the validation and test sets. For example, 

Yu et al. (2019) use a 77/3/20 split. 

http://image-net.org/download
https://qzyou.github.io/#datasets
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Fig. 1. Model accuracy. 

This figure shows the training and validation accuracy for the first 500 training steps using the Google Inception (v3) model and the DeepSent training data 

set. Accuracy is computed as the proportion of photos that the model is able to classify correctly, Accuracy = 

T rue Positi v e + T rue Negati v e 
T rue Positi v e + T rue Negati v e + False Positi v e + False Negati v e . 

Steps refers to learning steps or the number of times we pass the training set through the model. The training set is the set of photos used to adjust the 

weights in the final fully connected layer during the training process. The validation set is the set of photos not used to adjust the weights on the last fully 

connected layer, but its sole purpose is to help minimize overfitting by verifying that any increase in the training accuracy is not made at the expense of 

out-of-sample performance. We assign 10% of the photos to the validation set, 70% to the training set, and 20% to the testing set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

accuracy. 9 This value for accuracy is similar to those ob-

tained from other photo sentiment classification models in

the literature. For example, Campos et al. (2017) compare

various modifications to CNN models trained on DeepSent

and report the test set accuracy values, which range be-

tween 78.3 and 83.0%. To better test the performance

of our model, we also calculate recall (86.2%), precision

(94.3%), and F1 (90.1%). 10 Precision measures how accurate

our model is at identifying positive photos out of all the

photos that were predicted to be positive (this is an im-

portant metric when the cost of a false positive is high).

Recall measures how accurate the model is at identifying

positive photos out of all the positive photos in our sam-

ple (this is an important metric when the cost of a false

negative is high). F1 is simply the harmonic mean of pre-

cision and recall. 

One concern is that the photos in the DeepSent training

set are from social media and might not closely resemble

the types of professional news photos in the WSJ samples;

thus, the model trained with the DeepSent training set

might not be able to accurately classify professional pho-

tos. To address this concern, we randomly select 100 pho-

tos from our WSJ sample and classify each photo (classifi-
9 Test accuracy is computed as the proportion of photos in the test 

set that the trained model is able to classify correctly, Accuracy = 

T rue Positi v e + T rue Negati v e 
T rue Positi v e + T rue Negati v e + False Positi v e + False Negati v e . 

10 Recall = 

True Positi v e 
True Positi v e + False Negati v e , Prec ision = 

TruePositi v e 
True Positi v e + False Positi v e , and 

F 1 = 

2 ∗Recal l ∗Precision 
Recal l + Precision 

. 
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cation is preformed in MTurk by five individuals). 11 We ask 

these individuals to rate the content of each photo based 

on sentiment. We pass these photos through the model 

to get predictions and compare the predictions to the re- 

sponses we collect from MTurk. We summarize the results 

from this analysis in the following confusion matrix: 12 

Actual 

Positive Negative 

Prediction Positive 64 19 

Negative 5 12 

Based on the confusion matrix above, we calculate the 

performance of our model for classifying our sample of 

professional news photos from the WSJ. The accuracy is 

76.0%; recall is 92.8%; precision is 77.1%; and F1 is 84.2%. 

Given that we have imbalanced classes in this sample, it 

is crucial to pay attention to the F1. Our accuracy, re- 

call, precision, and F1 numbers are close to the ones 

You et al., (2015) report based on photo classification algo- 

rithms trained using the DeepSent data set (see Table 1 in 

You et al., (2015) for a summary of their results). Overall, 
11 We require MTurk “workers” to have a HIT approval rate of greater 

than 95% and to be located in the US. 
12 In the field of machine learning, a confusion matrix is a popular way 

of summarizing the performance of classification models. The numbers 

in the table represent the number of photos in our test sample that fall 

in each of the four buckets: true positives, false positives, false negatives, 

and true negatives. 
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Table 1 

Summary statistics. 

Panel A reports summary statistics for photo pessimism ( PhotoPes ) and 

text pessimism ( TextPes ). Panel B reports the sample statistics for the 

daily returns on the CRSP value-weighted ( VWRETD ) index, the S&P 500 

Index ( SPX ), the SPDR S&P 500 ETF ( SPY ), the Dow Jones Industrial Aver- 

age Index ( INDU ), and the SPDR Dow Jones Industrial Average ETF ( DIA ). 

Panel C reports the correlations between these variables. PhotoPes is cal- 

culated as the proportion of photos predicted to be negative on a given 

date. Text pessimism ( TextPes ) is calculated as the average pessimism 

score generated from the sentiment tool in Stanford’s CoreNLP software. 

We use the headline and summary of each article for calculating TextPes 

and use news photos that belong to articles from the following WSJ sec- 

tions: “Business,” “Economy,” “Markets,” “Politics,” and “Opinion.” The 

sample period ranges from September 2008 to September 2020. ∗p < 

0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. 

Panel A: Summary statistics of sentiment variables 

Variable N Mean Median P25 P75 Std dev 

PhotoPes 3048 0.228 0.222 0.180 0.270 0.077 

TextPes 3048 0.686 0.681 0.646 0.722 0.056 

Panel B: Summary statistics of market returns 

R t (%) N Mean P50 P25 P75 Std dev 

VWRETD 3048 0.045 0.081 -0.391 0.586 1.332 

SPX 3048 0.042 0.070 -0.380 0.570 1.335 

SPY 3048 0.049 0.070 -0.370 0.580 1.327 

INDU 3048 0.039 0.060 -0.390 0.550 1.283 

DIA 3048 0.047 0.070 -0.370 0.550 1.296 

Panel C: Correlations between sentiment variables 

PhotoPes 

TextPes 0.079 ∗∗∗

< 0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

this table shows that our model trained with the DeepSent

training set performs well at classifying news photos. 

Table A1 in the Appendix presents the top-20 photos in

our sample that are predicted to have the highest proba-

bility of depicting negative (top) or positive (bottom) sen-

timent. P hotoNe g it is the probability that photo i on day t

depicts negative sentiment. Overall, these example photos

help confirm that the photo classification model is working

correctly. 

2.2. The Wall Street Journal sample 

The WSJ is a daily newspaper that focuses on major

events and targets an audience with special interests in

economics and the financial markets. The WSJ offers its

subscribers online access to past articles, as far back as De-

cember 1997. However, articles prior to September 2008

are seldom included with photos. One reason behind the

lack of photos prior to September 2008 is that WSJ does

not own the rights to many of the photos and instead

licenses the photos for a limited time from other news

and media agencies, such as the Associated Press, Reuters,

and Getty Images. Once the license expires, the photos are

taken down. 

Between September 2008 and September 2020, we col-

lect the headline and the summary of each article, any

associated photos, and the time stamps of when the ar-

ticle is published from the following WSJ sections: “Busi-

ness,” “Economy,” “Markets,” “Politics,” and “Opinion.” We
278 
include international topics as long as they are related to 

economics (e.g., “Asia Business”). These sections cover ma- 

jor events related to companies or industries and general 

market conditions. 

We collect a total of 148,823 articles spanning 3048 

trading days. We classify these photos by sentiment using 

the photo classification model we discussed in Section 2.1 . 

2.3. Variable construction 

Our main variable, PhotoPes , is calculated as the propor- 

tion of photos predicted to be negative on a given date. 

The formula for PhotoPes on day t is: 

P hotoP e s t = 

∑ 

i (Ne g it ) 

n t 
, (1) 

where Ne g it is an indicator variable for whether photo i on 

day t is predicted to have negative sentiment. The denom- 

inator, n t , corresponds to the number of photos on date t . 

We provide the data on our website ( https://www.kuntara. 

net/ ). 

PhotoPes is not simply a binary measure. Although in- 

dividual photos are classified as either negative or positive, 

PhotoPes is a continuous measure. Days with more negative 

photos have a higher value for PhotoPes compared to days 

with fewer negative photos. This is the same idea behind 

many sentiment measures in the literature. We show our 

baseline results using another version of PhotoPes , which is 

constructed using the predicted likelihood ( P hotoNe g it ) in- 

stead of an indicator variable ( Ne g it ) for whether photo i 

on day t is negative and show that our results are consis- 

tent ( Table 2 , Panel B). We also show that if we adjust the 

cutoff for the indicator variable ( Ne g it ) from 50% to 55%, 

our results continue to hold ( Table A2 , Panel A). 

One of the goals in this paper is to compare the 

pessimism embedded in photos and text. Motivated by 

Manela and Moreira (2017) and Cong et al., (2018) , we 

analyze the headlines and summary of articles. Conceptu- 

ally, the machine learning methodology we use to iden- 

tify pessimism in photos includes highly nonlinear re- 

lationships among features. To facilitate a fair compari- 

son between pessimism embedded in photos and text, 

we avoid classifying text using the lexicon approach. In- 

stead, we use the sentiment tool in Stanford’s CoreNLP 

software to evaluate the pessimism in each sentence and 

take the average pessimism score across all sentences in 

the text as the pessimism score for the article, TextNeg 

(Source: https://stanfordnlp.github.io/CoreNLP/ ). The senti- 

ment tool is based on the recursive neural tensor net- 

work (RNTN) and is trained on a data set containing 

215,154 phrases with fine-grained sentiment labels (Scale: 

{" Negative " = 1; " Neutral " = 0.5; " Positive " = 0}). 

This RNTN model performs especially well for shorter 

phrases and pushes the accuracy on short phrases to 85.4% 

( Socher et al., 2013 ). Since the headline and the summary 

section of articles from the WSJ are often brief, this tool is 

appropriate. The formula for TextPes is as follows: 

T extP e s t = 

∑ 

i (T extNe g it ) 

n t 
, (2) 

https://www.kuntara.net/
https://stanfordnlp.github.io/CoreNLP/
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Table 2 

The impact of PhotoPes on market returns. 

This table reports β1 from the following time series regression: 

R t = β1 L 5( PhotoPe s t ) + β2 L 5( R t ) + β3 L 5( R 2 t ) + β4 X t + ε t , 

where PhotoPe s t is calculated as the proportion of photos predicted to be negative at time t , L 5 denotes five lags, and X t contains a set of ex- 

ogenous variables including a constant term, day-of-the-week dummies (except for Monday), and a recession dummy. In the regressions for Panel 

A, PhotoPes is calculated based on an indicator variable that the photo is predicted to be negative, while in the regressions for Panel B, Predicted 

Likelihood PhotoPes is calculated based on a predicted likelihood that the photo is negative. PhotoPes is winsorized at the 1% level and standardized 

to have a zero mean and unit variance. We use news photos that belong to articles from the following WSJ sections: “Business,” “Economy,” “Mar- 

kets,” “Politics,” and “Opinion.” R t is log daily return on the CRSP value-weighted ( VWRETD t ) index, the S&P 500 Index ( SPX t ), the SPDR S&P 500 

ETF ( SPY t ), the Dow Jones Industrial Average Index ( INDU t ), and the SPDR Dow Jones Industrial Average ETF ( DIA t ). The sample period ranges from 

September 2008 to September 2020. Newey and West (1987) standard errors are applied to compute the t- statistics. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 

0.01. 

Panel A: PhotoPes 

(1) (2) (3) (4) (5) 

VWRETD t SPX t SPY t INDU t DIA t 

Variables β t -stat β t- stat β t- stat β t- stat β t- stat 

PhotoPes t-1 -0.042 ∗ -1.837 -0.041 ∗ -1.803 -0.040 ∗ -1.787 -0.046 ∗∗ -2.182 -0.047 ∗∗ -2.183 

PhotoPes t-2 0.055 ∗∗ 2.004 0.051 ∗ 1.886 0.046 ∗ 1.726 0.043 ∗ 1.687 0.038 1.502 

PhotoPes t-3 -0.033 -1.324 -0.030 -1.213 -0.030 -1.294 -0.024 -1.053 -0.025 -1.142 

PhotoPes t-4 0.030 1.299 0.024 1.047 0.026 1.143 0.030 1.387 0.033 1.487 

PhotoPes t-5 0.057 ∗∗ 2.137 0.059 ∗∗ 2.228 0.056 ∗∗ 2.119 0.057 ∗∗ 2.193 0.054 ∗∗ 2.103 

Sum t-1 to t-5 0.067 0.063 0.058 0.060 0.053 

Sum t-2 to t-5 0.109 0.104 0.098 0.106 0.100 

χ 2 (1) p -value χ 2 (1) p -value χ 2 (1) p -value χ 2 (1) p -value χ 2 (1) p -value 

χ 2 (1)[Sum t-1 to t-5 = 0] 2.272 0.132 2.081 0.149 1.700 0.192 1.979 0.160 1.644 0.200 

χ 2 (1)[Sum t-2 to t-5 = 0] 6.615 ∗∗ 0.010 6.200 ∗∗ 0.013 5.466 ∗∗ 0.019 6.973 ∗∗∗ 0.008 6.257 ∗∗ 0.012 

Adj. R -squared 0.033 0.038 0.029 0.042 0.040 

N 3044 3044 3044 3044 3044 

Panel B: Predicted Likelihood PhotoPes 

(1) (2) (3) (4) (5) 

VWRETD t SPX t SPY t INDU t DIA t 

Variables β t- stat β t- stat β t- stat β t- stat β t- stat 

PhotoPes t-1 -0.052 ∗∗ -2.240 -0.052 ∗∗ -2.269 -0.051 ∗∗ -2.228 -0.055 ∗∗∗ -2.581 -0.056 ∗∗ -2.569 

PhotoPes t-2 0.039 1.487 0.034 1.345 0.028 1.139 0.029 1.255 0.024 1.031 

PhotoPes t-3 -0.020 -0.829 -0.017 -0.687 -0.017 -0.716 -0.011 -0.472 -0.011 -0.485 

PhotoPes t-4 0.019 0.789 0.016 0.676 0.019 0.769 0.026 1.120 0.029 1.242 

PhotoPes t-5 0.068 ∗∗∗ 2.596 0.070 ∗∗∗ 2.686 0.067 ∗∗ 2.576 0.062 ∗∗ 2.516 0.060 ∗∗ 2.390 

Sum t-1 to t-5 0.054 0.051 0.046 0.051 0.046 

Sum t-2 to t-5 0.106 0.103 0.097 0.106 0.102 

χ 2 (1) p -value χ 2 (1) p -value χ 2 (1) p -value χ 2 (1) p -value χ 2 (1) p -value 

χ 2 (1)[Sum t-1 to t-5 = 0] 1.777 0.182 1.646 0.200 1.311 0.252 1.760 0.185 1.412 0.235 

χ 2 (1)[Sum t-2 to t-5 = 0] 7.202 ∗∗∗ 0.007 7.033 ∗∗∗ 0.008 6.24 ∗∗ 0.012 8.013 ∗∗∗ 0.005 7.199 ∗∗∗ 0.007 

Adj. R -squared 0.032 0.038 0.029 0.042 0.040 

N 3044 3044 3044 3044 3044 

 

 

 

 

 

 

 

 

 

 

where T extNe g it is the pessimism score for each article i on

day t from the CoreNLP model. The denominator, n t , corre-

sponds to the number of articles in date t . PhotoPes and

TextPes are winsorized at the 1% level. Our results remain

the same without winsorizing ( Table A2 , Panel B). 

We prefer the RNTN approach over the dictionary-based

approach for the following reasons. First, the method we

use to identify sentiment in images includes highly non-

linear relations among features, whereas resorting to a

basic methodology for the text can bias results in our

favor by allowing images to capture more subtle sentiment
279 
characteristics, which would not be captured by the simple 

methodology utilized for the text. For instance, the dic- 

tionary approach gives the same weight to positive words 

like “good” and “great” and does not consider context and 

combination of words while the RNTN approach does. 

Thus, we believe it is appropriate to extract sentiment 

with methodologies of comparable complexity. Second, we 

analyze the headline and the summary section of articles, 

which are much shorter than the full text of news articles. 

The dictionary approach works best for long text like 10- 

Ks or full press releases because it avoids situations where 
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none of the words overlap with words in the dictionary

( Loughran and McDonald, 2011 ). In our data, 92.47% of

the headline and the summary section of articles do not

contain any net negative or positive words that belong in

the Loughran and McDonald dictionary. In contrast, only

63.66% of headline and the summary section of articles

contain neutral sentiment using the machine learning

approach. 

2.4. Descriptive statistics 

Table 1 , Panel A, reports the summary statistics for the

pessimism variables. We have 3048 trading days between

September 2008 and September 2020. On average, Pho-

toPes is 0.228, or 22.8% of photos are predicted to have

negative sentiment on a given day. On average, TextPes is

0.686, indicating that, on average, the headline and the

summary text of articles are made up of negative sen-

tences (Scale: {" Negative " = 1; " Neutral " = 0.5; " Pos-

itive " = 0}). All the variables have significant first-order

autocorrelation and thus are persistent (we address auto-

correlation concerns in our tests). 

Table 1 , Panel B, reports summary statistics for the ma-

jor US equity indices and ETFs that we use in our tests.

Table 1 , Panel C, reports how PhotoPes relates to TextPes .

We calculate pairwise correlations and corresponding p-

values between PhotoPes and TextPes . We find that Pho-

toPes and TextPes are positively correlated (correlation co-

efficient = 0.079, p -value < 0.01). The positive correlation

suggests that PhotoPes and TextPes are related. However,

the correlation is not very high, indicating some informa-

tion present in photos is distinct from that in the text in

the headline and in the summary section of WSJ articles.

At the article level, 62.65% of articles have consistent tone

between their text and photo. Fig. 2 presents a time se-

ries of our PhotoPes and TextPes in both daily and monthly

frequency. We observe that both series have large spikes

during periods of elevated fear including the subprime

mortgage crisis between 2008 and 2011 and the COVID-

19 crisis in 2020. For example, we note particularly large

spikes in both variables in 2011, which can be attributed

to the high tension between the US and Al Qaeda as evi-

dent from the US government terminating the head of Al

Qaeda on May 9, 2011. In addition, following the T ̄ohoku

earthquake and tsunami in Japan on March 11, 2011 there

was a tsunami warning on the west coast of the US. On

March 16, 2011, wholesale food prices in the US rose by

the largest monthly increase since November 1974, with an

increase of 3.9%. Rumors about inflation getting out of con-

trol only made the situation worse. Taken together, these

major news events are often accompanied by pessimistic

photos that are used in our measure. Finally, we observe

that PhotoPes and TextPes move closer together during mar-

ket turmoil compared to normal time. 13 
13 We find that the correlation coefficient between PhotoPes and TextPes 

is highest during market turmoil. The correlation peaked in the last quar- 

ter of 2008 to about 0.5, and then declined to 0.2 in January 2009. Simi- 

larly, in the second quarter of 2020, the correlation jumped to 0.36 during 

the midst of the COVID pandemic. 

280 
3. Results 

Behavioral models break from rational investor and 

market efficiency models by making two assumptions. 

First, behavioral models take into consideration that some 

investors are irrational and able to affect prices ( De Long 

et al., 1990 ). Biases, such as extrapolation ( Tversky and 

Kahneman, 1983 ) and overconfidence ( Fischhoff et al., 

1977 ), may lead irrational investors to increase demand 

for financial assets, pushing prices beyond economic fun- 

damentals. Second, limits to arbitrage prevent rational 

investors from fully and instantly correcting price de- 

viations from fundamentals ( Pontiff, 1996 ; Shleifer and 

Vishny, 1997 ). One of the main predictions of behavioral 

models is market return reversal: when there is a posi- 

tive (negative) sentiment spike, irrational investors will in- 

crease (decrease) demand for assets, driving prices away 

from fundamental levels. Behavioral models predict that 

this increase (decrease) in demand will lead to higher 

(lower) returns that will reverse over time as the market 

corrects to its fundamental level. 

3.1. News sentiment embedded in photos and text 

In this section, we discuss our main results. First, we 

show that the pessimism embedded in photos predicts 

market return reversals, consistent with behavioral model 

predictions ( De Long et al., 1990 ). Second, we study how 

the pessimism embedded in photos interacts with the pes- 

simism embedded in text. Third, we explore which type 

of news content is more effectively transmitted by pho- 

tos compared to text. Fourth, we construct three real- 

world trading strategies to highlight the benefit of analyz- 

ing news photos. 

3.1.1. The impact of PhotoPes on market returns 

Table 2 presents our main results from the time se- 

ries regression of market returns on lags of PhotoPes . 

Our specification is similar to that in Tetlock (2007) and 

Garcia (2013) . Specifically, we run the following, with 

Newey and West (1987) t -statistics: 

R t = β1 L 5 ( P hotoP e s t ) + β2 L 5 ( R t ) + β3 L 5 

(
R 

2 
t 

)
+ β4 X t + ε t , 

(3) 

where R t denotes daily log returns on the CRSP value- 

weighted (VWRETD) index, the S&P 500 Index (SPX), the 

SPDR S&P 500 ETF (SPY), the Dow Jones Industrial Aver- 

age Index (INDU), and the SPDR Dow Jones Industrial Av- 

erage ETF (DIA). P hotoPe s t is the proportion of photos that 

is predicted to be negative at time t ; L 5 transforms a vari- 

able into a row vector consisting of five lags of that vari- 

able; and X t is a set of exogenous variables that includes 

an intercept, day-of-the-week indicators (except for Mon- 

day), and an indicator variable for whether time t is in a 

recession period. The timing of news sentiment measures 

at t -1 is based on news on day t -1 that is published and 

in the public domain on the morning of day t . We exam- 

ine ETFs in addition to the major equity indices to confirm 

that our results are not driven by the illiquid components 

of the index ( Da et al., 2015 ). 
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Fig. 2. The time series of PhotoPes and TextPes . 

These figures show the time series of PhotoPes and TextPes on a daily (top) and monthly (bottom) basis for our sample period between September 2008 

and September 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

In Panel A in Table 2 , P hotoPe s t−1 is negatively related

to market returns in all specifications. In other words, days

with a higher proportion of photos predicted to contain

negative sentiment predict lower next day’s returns, on av-

erage, compared to days with a lower proportion of pho-

tos predicted to contain negative sentiment. The relation

is statistically significant at the 5% level for INDU and DIA

and the 10% level for VWRETD, SPX, and SPY. The mag-

nitude of the effect is economically meaningful: the aver-

age impact of a one standard deviation shift in PhotoPes

on the next day’s VWRETD is 4.2 bps, which is nearly the

size of the unconditional average daily returns of VWRETD
281 
(see Table 1 , Panel B, for descriptive statistics). We exam- 

ine the lags of PhotoPes to determine whether a reversal 

of the initial decline occurs in the following four trading 

days. We note that the reversal is concentrated on lags two 

and five. The magnitude of the reversal during the trading 

week after the photo is published ranges between 9.8 and 

10.9 bps. The chi-square tests show that the reversal (the 

sum of the coefficients between t -2 and t -5) is statistically 

significant at the 1% level for INDU and at the 5% level for 

VWRETD, SPX, SPY, and DIA. Moreover, the chi-square test 

shows that the sum of the PhotoPes coefficients between 

t -1 and t -5 is indistinguishable from zero, suggesting that 
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the initial decline at time t -1 is reversed over the remain-

der of the trading week. The return-reversal pattern is

consistent with transient downward price pressure from

pessimistic investors. We can rule out that PhotoPes con-

tains fundamental information since we show that the ini-

tial decline in returns is followed by a complete reversal. 

An important question is whether news photos directly

cause investors to become more or less pessimistic. Al-

though we cannot rule out the possibility that news edi-

tors select photos to reflect their readers’ beliefs, we pro-

vide some evidence that suggests news photos directly af-

fect investors’ beliefs. We examine how PhotoPes relates

to the Advisors Sentiment report. The Advisors Sentiment

report “surveys the market views of over 100 indepen-

dent investment newsletters and reports the findings as

the percentage of advisors that are bullish, those bearish

and those that expect a correction.”14 We regress the net

bearish scores on PhotoPes on days t -1 to t -5 and find that

PhotoPes predicts an increase in the net bearish score in

the following trading week. 15 This exercise suggests that

when news contains many negative photos, financial advi-

sors become more bearish and less bullish over the follow-

ing trading week. 

Next, we modify PhotoPes by replacing the negative sen-

timent indicator variable, Ne g it , with the predicted likeli-

hood of negative sentiment in photos. The predicted likeli-

hood is the classification model’s confidence about the pre-

diction that photo i on day t contains negative sentiment;

thus, the modified PhotoPes is going to place a higher

weight on photos that the photo classification model is

more certain about. In Panel B of Table 2 , we continue

to find that P hotoPe s t−1 is negatively related to market re-

turns. The economic magnitude and the statistical signifi-

cance of the relation is stronger when we use the modified

PhotoPes compared to our baseline results in Panel A. For

example, the average impact of a one standard deviation

shift in the modified PhotoPes on the next day’s VWRETD

is 5.2 bps. The relation is statistically significant at the 1%

level for INDU and the 5% level for VWRETD, SPX, SPY, and

DIA. The chi-square tests show that the reversal between

t -2 and t -5 is statistically significant at the 1% level for

VWRETD, SPX, INDU, and DIA and at the 5% level for SPY.

For the sake of brevity, we use only the non-modified Pho-

toPes in our remaining tests. 

3.1.2. PhotoPe s and sentiment embedded in text 

In this section, we compare the predictive abilities of

PhotoPes and TextPes . Moreover, we also examine whether

photos and news text are complements or substitutes.

Specifically, does the news media use photos to enhance

the sentiment embedded in text (complements), or are

photos used to convey alternative information to the text

(substitutes)? This is an important question to address

given the increasingly multimodal news media. 

In Table 3 , we examine how PhotoPes , TextPes , and their

interaction relate to market returns. We run the following

regression: 
14 Source: https://www.investorsintelligence.com/x/advisors _ sentiment. 

html . 
15 The results are available upon request from the authors. 
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R t = β1 L 5(P hotoP e s t ) + β2 L 5 ( T extP e s t ) 

+ β3 ( P hotoP es × T extP es ) t−1 + β4 L 5 ( R t ) + β5 L 5 

(
R 

2 
t 

)

+ β6 X t + ε t , (4) 

where T extPe s t is the average pessimism score from the 

CoreNLP model for all articles at time t (defined in 

Section 2.3 ). To better understand how the two variables 

interact, we calculate TextPes and PhotoPes based on the 

same articles (i.e., we do not include articles that do not 

have photos in the calculation of TextPes ). 

After controlling for the pessimism in news text in 

Table 3 , we continue to observe P hotoPe s t−1 is negatively 

related to market returns for VWRETD, SPX, SPY, INDU, and 

DIA. Although we show that TextPes without controlling 

for PhotoPes predicts return reversal in Table 4 , the coef- 

ficients for T extPe s t−1 in Table 3 are negative, but not sta- 

tistically significant at the 10% level, after adding PhotoPes 

to the model. It is important to note that one possible rea- 

son for TextPes loading insignificantly in this regression is 

because we compute TextPes based on only articles with 

photos. News editors may include photos in articles when 

the topic is more strongly communicated using visual in- 

formation as opposed to text, thus favoring our PhotoPes 

variable. 

Next, we shift our focus to the interaction term of Pho- 

toPes and TextPes . We assess the complementary or sub- 

stitutive effects of pessimism in news variables on the 

next day’s returns by relying on the interaction term, 

(P hotoPes × T extPes ) t−1 , and examining the marginal ef- 

fect of one pessimism variable on the next day’s return 

depending on the levels of the other pessimism variable 

( Aiken and West, 1991 ; Siggelkow, 2002 ). The media can 

use photos to reinforce the pessimism embedded in the 

text. If the pessimism embedded in photos enhances the 

pessimism embedded in the text, the marginal decrease 

in returns between the high and low levels of pessimism 

embedded in the photos should be higher when the pes- 

simism embedded in the text is higher rather lower. To 

support the complementary perspective, we expect to find 

that the coefficient for the interaction term, (P hotoPes ×
T extPes t−1 ) , is negative. On the other hand, the media can 

use photos to convey an alternative dimension of investor 

sentiment that is not already reflected in the text. If pes- 

simism embedded in the text and photo interact as substi- 

tutes, the marginal decrease in returns between the high 

and low levels of pessimism embedded in photos should 

be smaller when the pessimism embedded in the text is 

higher rather than lower. In other words, when there is a 

high level of TextPes , providing additional pessimism em- 

bedded in photos does not make a significant marginal 

contribution to market returns. To support the substitu- 

tive perspective, we expect to find that the coefficient for 

the interaction term, (P hotoPes × T extPes ) t−1 , is positive. 

In all five specifications of Table 3 , the coefficients for 

(P hotoPes × T extPes ) t−1 are positive and significant at the 

10% level, supporting the substitutive hypothesis. 16 

Although PhotoPes dominates once we control for 

TextPes , we corroborate Tetlock (2007) and Garcia (2013) by 
16 Interaction plots are available on request. 

https://www.investorsintelligence.com/x/advisors_sentiment.html
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Table 3 

Pessimism in photos and text. 

This table reports β1 , β2 , and β3 from the following time series regression: 

R t = β1 L 5(PhotoPe s t ) + β2 L 5(TextPe s t ) + β3 (PhotoPes × TextPes ) t−1 + β4 L 5( R t ) + β5 L 5( R 2 t ) + β6 X t + ε t , 

where R t is log daily return on the CRSP value-weighted ( VWRETD t ) index, the S&P 500 Index ( SPX t ), the SPDR S&P 500 ETF ( SPY t ), the Dow Jones Industrial 

Average Index ( INDU t ), and the SPDR Dow Jones Industrial Average ETF ( DIA t ). PhotoPe s t is calculated as the proportion of photos predicted to be negative 

at time t . TextPe s t is calculated as the average pessimism score for headline and summary of each article generated from the sentiment tool in Stanford’s 

CoreNLP software. (PhotoPes × Text Pest ) t−1 is the interaction between PhotoPe s t−1 and TextPe s t−1 . L 5 transforms a variable into a row vector consisting of 

five lags of that variable, and X t contains a set of exogenous variables including a constant term, day-of-the-week dummies (except for Monday), and a 

recession dummy. We use news photos that belong to articles from the following WSJ sections: “Business,” “Economy,” “Markets,” “Politics,” and “Opinion.”

PhotoPes and TextPes are winsorized at the 1% level and standardized to have a zero mean and unit variance. The sample period ranges from September 

2008 to September 2020. Newey and West (1987) standard errors are applied to compute the t- statistics. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. 

(1) (2) (3) (4) (5) 

VWRETD t SPX t SPY t INDU t DIA t 

Variables β t- stat β t- stat β t- stat β t- stat β t- stat 

PhotoPes t-1 -0.052 ∗∗ -2.359 -0.049 ∗∗ -2.229 -0.049 ∗∗ -2.220 -0.054 ∗∗∗ -2.600 -0.054 ∗∗∗ -2.596 

TextPes t-1 -0.027 -0.816 -0.038 -1.183 -0.041 -1.241 -0.042 -1.390 -0.043 -1.372 

( PhotoPesxTextPes) t-1 0.038 ∗ 1.942 0.033 ∗ 1.754 0.034 ∗ 1.788 0.034 ∗ 1.899 0.034 ∗ 1.917 

PhotoPes t-2 0.056 ∗∗ 2.090 0.052 ∗∗ 1.980 0.048 ∗ 1.817 0.045 ∗ 1.801 0.040 1.595 

PhotoPes t-3 -0.027 -1.089 -0.025 -1.012 -0.025 -1.076 -0.020 -0.878 -0.021 -0.949 

PhotoPes t-4 0.032 1.394 0.026 1.125 0.028 1.228 0.031 1.454 0.034 1.581 

PhotoPes t-5 0.051 ∗ 1.936 0.053 ∗∗ 2.018 0.049 ∗ 1.896 0.051 ∗∗ 2.003 0.049 ∗ 1.897 

TextPes t-2 -0.040 -1.162 -0.045 -1.277 -0.042 -1.197 -0.047 -1.444 -0.042 -1.295 

TextPes t-3 -0.024 -0.640 -0.014 -0.387 -0.016 -0.432 -0.003 -0.078 -0.004 -0.119 

TextPes t-4 -0.016 -0.494 -0.019 -0.578 -0.020 -0.629 -0.014 -0.451 -0.021 -0.671 

TextPes t-5 0.090 ∗∗ 2.488 0.093 ∗∗∗ 2.603 0.095 ∗∗∗ 2.652 0.083 ∗∗ 2.497 0.089 ∗∗∗ 2.701 

Sum t-1 to t-5 PhotoPes 0.060 0.057 0.051 0.053 0.048 

Sum t-2 to t-5 PhotoPes 0.112 0.106 0.100 0.107 0.102 

Sum t-1 to t-5 TextPes -0.017 -0.023 -0.024 -0.023 -0.021 

Sum t-2 to t-5 TextPes 0.010 0.015 0.017 0.019 0.022 

χ 2 (1) p -value χ 2 (1) p -value χ 2 (1) p -value χ 2 (1) p -value χ 2 (1) p -value 

χ 2 (1)[Sum t-1 to t-5 PhotoPes = 0] 1.866 0.172 1.740 0.187 1.376 0.241 1.633 0.201 1.318 0.251 

χ 2 (1)[Sum t-2 to t-5 PhotoPes = 0] 6.983 ∗∗∗ 0.008 6.412 ∗∗ 0.011 5.693 ∗∗ 0.017 7.187 ∗∗∗ 0.007 6.483 ∗∗ 0.011 

χ 2 (1)[Sum t-1 to t-5 TextPes = 0] 0.332 0.565 0.562 0.453 0.629 0.428 0.658 0.417 0.553 0.457 

χ 2 (1)[Sum t-2 to t-5 TextPes = 0] 0.050 0.823 0.146 0.702 0.181 0.671 0.262 0.609 0.328 0.567 

Adj. R -squared 0.037 0.043 0.034 0.046 0.044 

N 3044 3044 3044 3044 3044 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

showing that once we remove PhotoPes from our model,

TextPes alone predicts the return reversal. Table 4 reports

the results from the time series regression of market re-

turns (VWRETD, SPX, SPY, INDU, and DIA) on lags of

TextPes and controls (without controlling for PhotoPes and

without requiring articles to have photos). In all five speci-

fications of Table 4 , T extPe s t−1 is negatively related to mar-

ket returns at the 5% level for SPY, INDU, and DIA and at

the 10% level for VWRETD and SPX. The magnitude of the

effect is economically large: the average impact of a one

standard deviation shift in TextPes on the next day’s INDU

is 8.5 bps, which is nearly 2.2 time the size of the uncondi-

tional average daily returns of INDU. This economic magni-

tude is in line with what Tetlock (2007) reports (8.1 bps).

Moreover, the coefficients at t -2 continue to be negative

and significant for SPY and INDU, suggesting that markets

take more time to reflect information in news text com-

pared to photos. The reversal for TextPes is concentrated in

t -5, whereas the reversal for PhotoPes in our baseline re-

sults starts earlier at t -2 for most specifications. The mag-

nitude of the reversal between t -2 and t -5 is between 8.0

and 8.1 bps for INDU and DIA and is statistically signifi-
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cant at the 10% level. Considering the lack of significant 

reversal between t -2 and t -5 for TextPes in specifications 

1 to 3 but the significant positive coefficient at t -5 in all 

specifications, we conclude that the initial effect is only 

partially reversed. Overall, our results are consistent with 

TextPes containing both sentiment and fundamental infor- 

mation; thus, its relation to market returns is only partly 

transitory. 

3.1.3. Attention and PhotoPes 

We are interested in examining whether photos can 

play an attention-grabbing role in newspapers. Photos 

that evoke strong emotions from their audience could 

possibly detract from news text and in turn dominate the 

pessimism-return relation. Studies show that inclusion of 

photos in news can be attention-grabbing. For example, 

Garcia and Stark (1991) conduct an eye-tracking study 

and document how photos are the most common initial 

attraction to newspaper pages. Powell et al., (2015) find 

similar evidence by showing that content with text accom- 

panied by photo or photo-alone is more attention-grabbing 

than content with text-alone. Motivated by these stud- 
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Table 4 

The impact of TextPes on market returns. 

This table reports β1 from the following time series regression: 

R t = β1 L 5( TextPe s t ) + β2 L 5( R t ) + β3 L 5( R 2 t ) + β4 X t + ε t , 

where TextPe s t is calculated as the average pessimism score for the headline and the summary of each article generated from the sentiment tool 

in Stanford’s CoreNLP software on time t , L 5 transforms a variable into a row vector consisting of five lags of that variable, and X t contains a set 

of exogenous variables including a constant term, day-of-the-week dummies (except for Monday), and a recession dummy. TextPes is winsorized at 

the 1% level and standardized to have a zero mean and unit variance. We use news articles that belong to articles from the following WSJ sections: 

“Business,” “Economy,” “Markets,” “Politics,” and “Opinion.” R t is log daily return on the CRSP value-weighted ( VWRETD t ) index, the S&P 500 Index 

( SPX t ), the SPDR S&P 500 ETF ( SPY t ), the Dow Jones Industrial Average Index ( INDU t ), and the SPDR Dow Jones Industrial Average ETF ( DIA t ). The 

sample period ranges from September 2008 to September 2020. Newey and West (1987) standard errors are applied to compute the t- statistics. ∗p 

< 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. 

(1) (2) (3) (4) (5) 

VWRETD t SPX t SPY t INDU t DIA t 

Variables β t- stat β t- stat β t- stat β t- stat β t- stat 

TextPes t-1 -0.071 ∗ -1.663 -0.083 ∗ -1.904 -0.087 ∗∗ -1.977 -0.085 ∗∗ -2.002 -0.086 ∗∗ -1.998 

TextPes t-2 -0.056 -1.466 -0.061 -1.590 -0.065 ∗ -1.661 -0.062 ∗ -1.686 -0.061 -1.628 

TextPes t-3 -0.007 -0.150 0.001 0.018 -0.004 -0.078 0.005 0.108 -0.003 -0.069 

TextPes t-4 0.021 0.527 0.017 0.436 0.021 0.540 0.027 0.709 0.029 0.756 

TextPes t-5 0.107 ∗∗ 2.280 0.116 ∗∗ 2.448 0.124 ∗∗∗ 2.612 0.110 ∗∗ 2.408 0.116 ∗∗ 2.521 

Sum t-1 to t-5 -0.006 -0.010 -0.011 -0.005 -0.005 

Sum t-2 to t-5 0.065 0.073 0.076 0.080 0.081 

χ 2 (1) p -value χ 2 (1) p -value χ 2 (1) p -value χ 2 (1) p -value χ 2 (1) p -value 

χ 2 (1)[Sum t-1 to t-5 = 0] 0.054 0.816 0.112 0.738 0.120 0.729 0.041 0.840 0.030 0.862 

χ 2 (1)[Sum t-2 to t-5 = 0] 1.697 0.193 2.171 0.141 2.454 0.117 2.812 ∗ 0.094 2.931 ∗ 0.087 

Adj. R -squared 0.028 0.035 0.028 0.038 0.039 

N 3044 3044 3044 3044 3044 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17 In untabulated results, we document that the salience effect in 

Table 5 is not symmetric. The effect is strongest during days when most 

photos are positive (lowest PhotoPes decile). This evidence is consistent 

with Sicherman et al. (2015) who find that investors have selective at- 

tention. They find that investor attention to financial markets plummets 

by 9.5% during market declines. When PhotoPes is high (more negative 

photos), investors pay less attention to photos, thus the effect is smaller 

compared to days with low PhotoPes . 
ies, we test how the relation between the pessimism

embedded in news and market returns varies depending

on the presence of salient news photos. 

To test the attention-grabbing role of news photos, we

run the following regression to differentiate between the

effect of PhotoPes and TextPes on market returns along pe-

riods when photos are salient: 

R t = ( E t ) [ β1 L 5(P hotoP e s t ) + β2 L 5 ( T extP e s t ) 

+ β3 (P hotoP es × T extP es ) t−1 + β4 L 5 ( R t ) + β5 L 5 

(
R 

2 
t 

)]

+ ( 1 − E t ) [ γ1 L 5(P hotoP e s t ) + γ2 L 5 ( T extP e s t ) 

+ γ3 (P hotoP es × T extP es ) t−1 + γ4 L 5 ( R t ) + γ5 L 5 

(
R 

2 
t 

)]

+ β6 X t + ε t , (5)

where E t is an indicator variable that takes a value of one

if day t is in the top or bottom decile of PhotoPes . We

postulate that days when the majority of photos have the

same sentiment (i.e., photos are overwhelmingly positive

or negative), E t = 1, readers will find the consistent mes-

sage from photos to be salient and thus will focus on pho-

tos instead of text. On the other hand, days when photos

have a neutral or mixed sentiment, E t = 0, readers will find

the mixed message from photos to be weak and thus will

focus on the text. 

We provide support for the attention-grabbing hypoth-

esis in Table 5 . We find that PhotoPes is negatively related

to the next day’s market returns during periods when pho-

tos are salient at the 5% level in all specifications. More-

over, during periods when photos are salient, TextPes is

not statistically related to the next day’s market returns.

In contrast, we find that during periods when photos are
284 
not salient, TextPes is negatively related to the next day’s 

market returns at the 5% level for SPX, SPY, INDU, and 

DIA, and at the 10% for VWRETD. Moreover, PhotoPes is not 

significantly related to the next day’s market returns dur- 

ing periods when photos are not salient. Overall, the ev- 

idence in Table 5 suggest that during days when photos 

are salient, PhotoPes dominates and TextPes is not signifi- 

cant. In contrast, during days when photos are not salient, 

TextPes dominates and PhotoPes is not statistically signifi- 

cant. It is possible that photos grab attention to the whole 

article including the text; however, our evidence does not 

support this possibility since we find that the coefficient 

for T extPe s t−1 is insignificant (significant) during periods 

when photos are salient (not salient). 17 

3.1.4. Which information is more effectively transmitted by 

photos? 

We attempt to answer what information news photos 

capture that text cannot. Prior studies suggest that pho- 

tos can be a more effective medium at capturing traumatic 

events ( Chemtob et al., 1999 ). We test whether the rela- 

tion between market returns and pessimism embedded in 

photos and text varies during periods of elevated fear. 
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Table 5 

The impact of pessimism embedded in photos and text on market returns during salient PhotoPes . 

This table reports β1 , β2 , β3 , γ1 , γ2 , and γ3 from the following time series regression: 

R t = ( E t )[ β1 L 5( PhotoPe s t ) + β2 L 5( TextPe s t ) + β3 ( PhotoPes × TextPes ) t−1 + β4 L 5( R t ) + β5 L 5( R 2 t ) ] 
+ ( 1 − E t )[ γ1 L 5( PhotoPe s t ) + γ2 L 5( TextPe s t ) + γ3 ( PhotoPes × TextPes ) t−1 + γ4 L 5( R t ) + γ5 L 5( R 2 t ) ] + β6 X t + ε t , 

where E t is an indicator variable for whether period t is in the top or bottom decile of PhotoPes , R t is the log daily return on the CRSP value-weighted 

( VWRETD t ) index, the S&P 500 Index ( SPX t ), the SPDR S&P 500 ETF ( SPY t ), the Dow Jones Industrial Average Index ( INDU t ), and the SPDR Dow Jones Indus- 

trial Average ETF ( DIA t ). PhotoPe s t is calculated as the proportion of photos predicted to be negative at time t . TextPe s t is calculated as the average pes- 

simism score for the headline and the summary of each article generated from the sentiment tool in Stanford’s CoreNLP software. ( PhotoPes × TextPes ) t−1 

is the interaction between PhotoPe s t−1 and TextPe s t−1 . L 5 transforms a variable into a row vector consisting of five lags of that variable, and X t contains 

a set of exogenous variables including a constant term, day-of-the-week dummies (except for Monday), and a recession dummy. We use news photos 

that belong to articles from the following WSJ sections: “Business,” “Economy,” “Markets,” “Politics,” and “Opinion.” PhotoPes and TextPes are winsorized 

at the 1% level and standardized to have a zero mean and unit variance. The sample period ranges from September 2008 to September 2020. Newey and 

West (1987) standard errors are applied to compute the t- statistics. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. 

(1) (2) (3) 

VWRETD t SPX t SPY t 

E t = Salient photo period E t = Salient photo period E t = Salient photo period 

Variables β t- stat γ t- stat β t- stat γ t- stat β t- stat γ t- stat 

PhotoPes t-1 -0.070 ∗∗ -2.479 -0.015 -0.332 -0.064 ∗∗ -2.295 -0.016 -0.365 -0.063 ∗∗ -2.260 -0.015 -0.342 

TextPes t-1 0.047 0.900 -0.070 ∗ -1.883 0.031 0.606 -0.081 ∗∗ -2.220 0.030 0.585 -0.080 ∗∗ -2.137 

(PhotoPes × TextPes) t-1 0.034 1.524 0.070 1.450 0.029 1.312 0.065 1.362 0.030 1.403 0.060 1.270 

PhotoPes t-2 0.100 ∗∗∗ 3.282 -0.034 -0.813 0.099 ∗∗∗ 3.316 -0.041 -0.978 0.094 ∗∗∗ 3.173 -0.044 -1.079 

PhotoPes t-3 -0.020 -0.659 -0.017 -0.411 -0.017 -0.565 -0.020 -0.498 -0.015 -0.526 -0.019 -0.489 

PhotoPes t-4 0.046 ∗ 1.710 0.009 0.216 0.042 1.571 -0.001 -0.033 0.042 1.632 0.003 0.066 

PhotoPes t-5 0.047 1.469 -0.009 -0.225 0.049 1.538 -0.004 -0.098 0.045 1.383 -0.006 -0.166 

TextPes t-2 0.044 0.684 -0.066 ∗ -1.795 0.043 0.664 -0.071 ∗ -1.912 0.051 0.761 -0.072 ∗ -1.931 

TextPes t-3 -0.128 ∗∗ -2.373 0.013 0.316 -0.113 ∗∗ -2.174 0.022 0.538 -0.114 ∗∗ -2.146 0.020 0.486 

TextPes t-4 -0.079 -1.412 0.002 0.057 -0.083 -1.488 -0.001 -0.018 -0.079 -1.488 -0.002 -0.050 

TextPes t-5 0.182 ∗∗∗ 3.133 0.059 1.520 0.186 ∗∗∗ 3.255 0.064 1.638 0.184 ∗∗∗ 3.135 0.065 ∗ 1.694 

Sum t-1 to t-5 PhotoPes 0.103 -0.066 0.109 -0.082 0.103 -0.081 

Sum t-2 to t-5 PhotoPes 0.173 -0.051 0.173 -0.066 0.166 -0.066 

Sum t-1 to t-5 TextPes 0.066 -0.062 0.064 -0.067 0.072 -0.069 

Sum t-2 to t-5 TextPes 0.019 0.008 0.033 0.014 0.042 0.011 

χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value 

χ2 (1)[Sum t-1 to t-5 PhotoPes = 0] 2.905 ∗ 0.088 0.602 0.438 3.224 ∗ 0.073 0.958 0.328 2.851 ∗ 0.091 0.941 0.332 

χ2 (1)[Sum t-2 to t-5 PhotoPes = 0] 9.777 ∗∗∗ 0.002 0.480 0.489 9.696 ∗∗∗ 0.002 0.823 0.364 8.943 ∗∗∗ 0.003 0.833 0.362 

χ2 (1)[Sum t-1 to t-5 TextPes = 0] 0.437 0.509 1.842 0.175 0.405 0.525 2.247 0.134 0.525 0.469 2.443 0.118 

χ2 (1)[Sum t-2 to t-5 TextPes = 0] 0.041 0.840 0.028 0.867 0.115 0.734 0.079 0.778 0.187 0.666 0.052 0.820 

Adj. R -squared 0.075 0.086 0.071 

N 3044 3044 3044 

(4) (5) 

INDU t DIA t 

E t = Salient photo period E t = Salient photo period 

Variables β t- stat γ t- stat β t- stat γ t- stat 

PhotoPes t-1 -0.066 ∗∗ -2.537 -0.034 -0.797 -0.066 ∗∗ -2.505 -0.034 -0.806 

TextPes t-1 0.016 0.338 -0.079 ∗∗ -2.285 0.016 0.345 -0.075 ∗∗ -2.124 

(PhotoPes × TextPes) t-1 0.030 1.471 0.060 1.358 0.031 1.536 0.056 1.253 

PhotoPes t-2 0.083 ∗∗∗ 2.901 -0.039 -0.999 0.077 ∗∗∗ 2.696 -0.044 -1.134 

PhotoPes t-3 -0.011 -0.411 -0.017 -0.4 4 4 -0.010 -0.354 -0.021 -0.556 

PhotoPes t-4 0.041 1.638 0.016 0.418 0.040 1.603 0.025 0.626 

PhotoPes t-5 0.041 1.320 0.003 0.080 0.036 1.111 0.003 0.070 

TextPes t-2 0.049 0.808 -0.076 ∗∗ -2.169 0.064 1.055 -0.079 ∗∗ -2.188 

TextPes t-3 -0.089 ∗ -1.844 0.032 0.814 -0.088 ∗ -1.801 0.032 0.819 

TextPes t-4 -0.068 -1.308 0.002 0.046 -0.073 -1.394 -0.008 -0.219 

TextPes t-5 0.159 ∗∗∗ 2.987 0.058 1.629 0.165 ∗∗∗ 2.929 0.062 ∗ 1.774 

Sum t-1 to t-5 PhotoPes 0.088 -0.071 0.077 -0.071 

Sum t-2 to t-5 PhotoPes 0.154 -0.037 0.143 -0.037 

Sum t-1 to t-5 TextPes 0.067 -0.063 0.084 -0.068 

Sum t-2 to t-5 TextPes 0.051 0.016 0.068 0.007 

χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value 

χ2 (1)[Sum t-1 to t-5 PhotoPes = 0] 2.256 0.133 0.772 0.380 1.777 0.183 0.770 0.380 

χ2 (1)[Sum t-2 to t-5 PhotoPes = 0] 8.235 ∗∗∗ 0.004 0.279 0.598 7.128 ∗∗∗ 0.008 0.281 0.596 

χ2 (1)[Sum t-1 to t-5 TextPes = 0] 0.529 0.467 2.309 0.129 0.860 0.354 2.590 0.108 

χ2 (1)[Sum t-2 to t-5 TextPes = 0] 0.338 0.561 0.107 0.744 0.598 0.439 0.027 0.869 

Adj. R -squared 0.096 0.093 

N 3044 3044 

285 
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19 We continue to observe a positive and significant alpha if we use the 

Fama and French (2015) factors. 
20 Our trading strategy involves trading only two highly liquid assets—

SPY and 30-day T-bills; thus, we think transaction costs are going to be 

small for our strategy. However, it is important to highlight that we do 

not take into account transaction costs including commissions, price im- 

pact costs, and capital gain taxes. The breakeven transaction cost that will 

eliminate our profit from the PhotoPes ( Combined ) trading strategy relative 
We proxy for periods of elevated fear using TRMI

(Thomson Reuters MarketPsych Indices) measures that

capture tone from a broad spectrum of news media

sources and social media content for different topics and

emotions. TRMI uses a proprietary dictionary to classify

the tone of different emotions and events in day t and

quantify them on a 0 to 1 scale; the higher the score, the

more prevalent is the event or emotion. To examine how

the relation between pessimism in news using text and

photos relates to market returns by fear level, we run the

following regression: 

R t = ( F t ) [ β1 L 5(P hotoP e s t ) + β2 L 5 ( T extP e s t ) 

+ β3 (P hotoP es × T extP es ) t−1 + β4 L 5 ( R t ) + β5 L 5 

(
R 

2 
t 

)]

+ ( 1 − F t ) [ γ1 L 5(P hotoP e s t ) + γ2 L 5 ( T extP e s t ) 

+ γ3 (P hotoP es × T extP es ) t−1 + γ4 L 5 ( R t ) + γ5 L 5 

(
R 

2 
t 

)]

+ β6 X t + ε t , (6)

where F t is an indicator variable that takes a value of one if

day t has an above-median fear score (computed as the av-

erage TRMI score of the following topics: fear and gloom). 

In all five specifications in Table 6 , P hotoPe s t−1 is nega-

tively related to market returns during periods of both high

and low levels of fear. However, the magnitude is much

larger during high fear periods: for example, the average

impact of a one standard deviation shift in PhotoPes on the

next day’s VWRETD is 10.3 bps during periods of high fear

and only 3.7 bps for periods of low fear. The same can-

not be said for TextPes . In all the specifications, T extPe s t−1

is negative, but not significant, and the magnitude of the

coefficient is similar along periods of high or low levels of

fear. 18 

Overall, the coefficient for the pessimism embedded in

photos is roughly 2.8 time larger during periods of ele-

vated fear compared to periods of little fear, while the

coefficient for TextPes is similar during both periods. This

evidence is consistent with photos being more effective

than text at conveying fear or traumatic events like war

( Chemtob et al., 1999 ). 

3.1.5. Applications 

We construct three real-world trading strategies to

highlight the benefit of analyzing news photos using our

sample of news from the WSJ. To ensure that the re-

turns on these trading strategies are not driven by bid-

ask bounce or day-of-the-week effects, we use residuals

from recursively regressing PhotoPes or TextPes on lagged

returns (five lags) and day-of-the-week dummies available

at time t -1, denoted by PhotoPes ⊥ or TextPes ⊥ , respectively.

The strategies require investors, each day, to either invest

in SPY or in the risk-free asset (30-day Treasury bills),

depending on lagged pessimism in news. The first strat-

egy is based on the pessimism embedded in news pho-

tos: following days in which PhotoPes ⊥ is above its histor-

ical mean (expanding), we invest in the SPY at the mar-

ket close of day t + 3 and sell on the market close two
18 Curious readers might be concerned that the F t variable is simply 

picking out days with higher PhotoPes . This should not be a concern as 

the correlation between the TRMI fear and gloom scores and PhotoPes is 

quite low and insignificant (correlation of -0.025 with p -value = 0.16). 
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days later ( t + 5). The second strategy is based on pes- 

simism embedded in text: following days in which TextPes 
⊥ is above its historical mean (expanding), we invest in 

the SPY at the market close of day t + 3 and sell on the 

market close two days later ( t + 5). The third strategy 

involves pessimism from both text and photos: following 

days in which PhotoPes ⊥ and TextPes ⊥ are above their his- 

torical means, we invest in the SPY at the market close 

of day t + 3 and sell on the market close two days later 

( t + 5). The reason we pick the two-day investment period 

is that the reversal patterns for PhotoPes and TextPes over- 

lap between t + 4 and t + 5. The reversal pattern for Pho- 

toPes starts on day t + 2 ( Table 2 ); however, the reversal 

pattern for TextPes does not turn positive until day t + 4 

( Table 4 ). 

In Panel A of Table 7 , we report the means and stan- 

dard deviations of daily excess returns (in percentages) and 

the Sharpe ratio of the three strategies involving PhotoPes ⊥ , 
TextPes ⊥ , or a combination of the two. We purchase the 

SPY in the first, second, and third strategies 1992, 1891, 

and 1221 times, respectively. On average, the first strategy 

(based on PhotoPes ⊥ ) generates 5.8 bps in daily excess re- 

turns, which is higher than the 4.7 bps in excess returns 

for the buy-and-hold SPY strategy, and the 3.7 bps in daily 

excess returns for the TextPes ⊥ strategy. In addition, the 

PhotoPes ⊥ strategy generates a 0.88 Sharpe ratio compared 

to the 0.60 Sharpe ratio from the buy-and-hold SPY strat- 

egy and the 0.53 Sharpe ratio from the TextPes ⊥ strategy 

(Sharpe ratios are annualized). Next, we run time series re- 

gressions of daily excess returns from the PhotoPes ⊥ or the 

combined strategy on the Fama and French (1993) three 

factors ( Mkt_Rf, SMB , and HML ), the Carhart (1997) mo- 

mentum factor ( MOM ), and the Da et al., (2014) short-run 

reversal factor ( ST_Rev ). Panel B of Table 7 reports the re- 

sults. We find that the combined strategy generates a pos- 

itive and significant five-factor alpha of 5.45% per annum 

(2.1 bps per day). 19 

According to Fig. 3 , by the end of our sample period, 

the first, second, and third strategies earned $4.76, $2.52, 

and $4.46 in excess cumulative returns for a $1 invested 

at the beginning of our sample period. The profit from 

the trading strategies based on PhotoPes ⊥ is economically 

higher than a buy-and-hold strategy of SPY, which earned 

$3.23 for a $1 invested at the beginning of our sample pe- 

riod. 20 
to holding the index is roughly 11.8 (7.6) bps per trade. The breakeven 

transaction cost that will make the total return from our PhotoPes ( Com- 

bined ) trading strategy equal to zero is 22.2 (19.0) bps per trade. We trade 

(switch between 100% in SPY and 100% in 30-day T-bills) 789 (866) time 

in our PhotoPes ( Combined ) trading strategy. If the cost per trade is above 

the breakeven transaction cost, our trading strategy will not be attractive. 
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Table 6 

The impact of pessimism embedded in photos and text on market returns during periods of elevated fear. 

This table reports β1 , β2 , β3 , γ1 , γ2 , and γ3 from the following time series regression: 

R t = ( F t )[ β1 L 5( PhotoPe s t ) + β2 L 5( TextPe s t ) + β3 (PhotoPes × TextPe ) s t−1 + β4 L 5( R t ) + β5 L 5( R 2 t ) ] 
+ ( 1 − F t )[ γ1 L 5( PhotoPe s t ) + γ2 L 5( TextPe s t ) + γ3 ( PhotoPes × TextPes ) t−1 + γ4 L 5( R t ) + γ5 L 5( R 2 t ) ] + β6 X t + ε t , 

where F t is an indicator variable for whether period t has an above-median fear score (computed as the average TRMI score of the following topics: fear 

and gloom), R t is log daily return on the CRSP value-weighted ( VWRETD t ) index, the S&P 500 Index ( SPX t ), the SPDR S&P 500 ETF ( SPY t ), the Dow Jones 

Industrial Average Index ( INDU t ), and the SPDR Dow Jones Industrial Average ETF ( DIA t ). PhotoPe s t is calculated as the proportion of photos predicted to be 

negative at time t . TextPe s t is calculated as the average pessimism score for the headline and the summary of each article generated from the sentiment 

tool in Stanford’s CoreNLP software. (PhotoPes × TextPes ) t−1 is the interaction between PhotoPe s t−1 and TextPe s t−1 . L 5 transforms a variable into a row 

vector consisting of five lags of that variable, and X t contains a set of exogenous variables including a constant term, day-of-the-week dummies (except 

for Monday), and a recession dummy. We use news photos that belong to articles from the following WSJ sections: “Business,” “Economy,” “Markets,”

“Politics,” and “Opinion.” PhotoPes and TextPes are winsorized at the 1% level and standardized to have a zero mean and unit variance. The sample period 

ranges from September 2008 to September 2020. Newey and West (1987) standard errors are applied to compute the t- statistics. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p 

< 0.01. 

(1) (2) (3) 

VWRETD t SPX t SPY t 

F t = Fear period F t = Fear period F t = Fear period 

Variables β t- stat γ t- stat β t- stat γ t- stat β t- stat γ t- stat 

PhotoPes t-1 -0.103 ∗∗ -2.006 -0.037 ∗ -1.893 -0.093 ∗ -1.839 -0.036 ∗ -1.822 -0.092 ∗ -1.793 -0.036 ∗ -1.848 

TextPes t-1 -0.018 -0.291 -0.019 -0.720 -0.031 -0.517 -0.025 -0.956 -0.035 -0.563 -0.026 -0.987 

(PhotoPes × TextPes) t-1 0.087 ∗∗ 2.063 0.009 0.525 0.079 ∗ 1.920 0.005 0.294 0.076 ∗ 1.830 0.006 0.334 

PhotoPes t-2 0.065 1.100 0.050 ∗∗ 2.284 0.056 0.956 0.049 ∗∗ 2.272 0.053 0.879 0.049 ∗∗ 2.257 

PhotoPes t-3 0.018 0.357 -0.054 ∗∗ -2.423 0.023 0.470 -0.054 ∗∗ -2.455 0.018 0.374 -0.056 ∗∗ -2.550 

PhotoPes t-4 0.093 ∗ 1.914 0.001 0.059 0.077 1.587 0.001 0.059 0.078 ∗ 1.646 0.004 0.194 

PhotoPes t-5 0.080 1.431 0.027 1.214 0.082 1.482 0.029 1.307 0.075 1.374 0.030 1.349 

TextPes t-2 -0.063 -0.919 -0.041 -1.510 -0.071 -1.031 -0.044 ∗ -1.649 -0.059 -0.862 -0.046 ∗ -1.697 

TextPes t-3 -0.079 -1.094 0.013 0.517 -0.062 -0.885 0.018 0.721 -0.065 -0.920 0.019 0.756 

TextPes t-4 -0.062 -0.937 0.007 0.263 -0.069 -1.046 0.006 0.235 -0.066 -1.022 0.007 0.267 

TextPes t-5 0.134 ∗ 1.916 0.061 ∗∗ 2.122 0.138 ∗∗ 2.006 0.062 ∗∗ 2.161 0.138 ∗∗ 2.025 0.061 ∗∗ 2.150 

Sum t-1 to t-5 PhotoPes 0.153 -0.013 0.145 -0.011 0.132 -0.009 

Sum t-2 to t-5 PhotoPes 0.256 0.024 0.238 0.025 0.224 0.027 

Sum t-1 to t-5 TextPes -0.088 0.021 -0.095 0.017 -0.087 0.015 

Sum t-2 to t-5 TextPes -0.070 0.040 -0.064 0.042 -0.052 0.041 

χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value 

χ2 (1)[Sum t-1 to t-5 PhotoPes = 0] 2.259 0.133 0.104 0.747 2.033 0.154 0.065 0.799 1.724 0.189 0.048 0.827 

χ2 (1)[Sum t-2 to t-5 PhotoPes = 0] 7.078 ∗∗∗ 0.008 0.452 0.502 6.283 ∗∗ 0.012 0.496 0.481 5.629 ∗∗ 0.018 0.567 0.451 

χ2 (1)[Sum t-1 to t-5 TextPes = 0] 1.306 0.253 0.618 0.432 1.562 0.211 0.406 0.524 1.332 0.249 0.360 0.548 

χ2 (1)[Sum t-2 to t-5 TextPes = 0] 0.665 0.415 1.307 0.253 0.580 0.446 1.438 0.231 0.372 0.542 1.432 0.231 

Adj. R -squared 0.046 0.053 0.044 

N 3044 3044 3044 

(4) (5) 

INDU t DIA t 

F t = Fear period F t = Fear period 

Variables β t- stat γ t- stat β t- stat γ t- stat 

PhotoPes t-1 -0.101 ∗∗ -2.102 -0.043 ∗∗ -2.252 -0.102 ∗∗ -2.090 -0.043 ∗∗ -2.260 

TextPes t-1 -0.031 -0.563 -0.028 -1.134 -0.030 -0.505 -0.027 -1.099 

( PhotoPes × TextPes) t-1 0.084 ∗∗ 2.145 0.003 0.215 0.083 ∗∗ 2.107 0.003 0.217 

PhotoPes t-2 0.039 0.701 0.050 ∗∗ 2.410 0.029 0.511 0.051 ∗∗ 2.473 

PhotoPes t-3 0.026 0.555 -0.049 ∗∗ -2.368 0.022 0.487 -0.050 ∗∗ -2.424 

PhotoPes t-4 0.070 1.541 0.013 0.622 0.074 1.626 0.015 0.733 

PhotoPes t-5 0.071 1.322 0.034 1.624 0.068 1.255 0.033 1.614 

TextPes t-2 -0.079 -1.245 -0.044 ∗ -1.682 -0.072 -1.118 -0.042 -1.637 

TextPes t-3 -0.047 -0.714 0.027 1.101 -0.048 -0.728 0.025 1.050 

TextPes t-4 -0.050 -0.815 0.005 0.186 -0.061 -0.978 0.002 0.067 

TextPes t-5 0.127 ∗∗ 2.017 0.051 ∗ 1.913 0.135 ∗∗ 2.185 0.054 ∗∗ 1.995 

Sum t-1 to t-5 PhotoPes 0.105 0.005 0.091 0.006 

Sum t-2 to t-5 PhotoPes 0.206 0.048 0.193 0.049 

Sum t-1 to t-5 TextPes -0.080 0.011 -0.076 0.012 

Sum t-2 to t-5 TextPes -0.049 0.039 -0.046 0.039 

χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value 

χ2 (1)[Sum t-1 to t-5 PhotoPes = 0] 1.198 0.274 0.019 0.891 0.916 0.338 0.036 0.850 

χ2 (1)[Sum t-2 to t-5 PhotoPes = 0] 5.23 ∗∗ 0.022 1.905 0.168 4.583 ∗∗ 0.032 2.065 0.151 

χ2 (1)[Sum t-1 to t-5 TextPes = 0] 1.307 0.253 0.169 0.681 1.086 0.297 0.169 0.681 

χ2 (1)[Sum t-2 to t-5 TextPes = 0] 0.396 0.529 1.350 0.245 0.309 0.578 1.307 0.253 

Adj. R -squared 0.058 0.058 

N 3044 3044 

287 
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Fig. 3. Trading strategy. 

This graph depicts the accumulated dollar excess return from out-of-sample trading strategies based on pessimism from news compared to the passive 

strategy of holding the SPY. See Section 3.1.5 for details about the trading strategies. 

Table 7 

Performance of trading strategies based on PhotoPes . 

Panel A reports the mean, standard deviation, and Sharpe ratio ( SR ) 

of excess daily returns (in percentages) for our trading strategies in- 

volving PhotoPes , TextPes, Combined (a combination of the two plus 

the SPY index), and Index (SPY). N indicates the number of days 

holding the SPY index. See Section 3.1.5 for details about the strate- 

gies. Panel B reports estimates from time series regressions of daily 

excess returns from the PhotoPes and combined strategies on the 

Fama and French (1993) three factors ( Mkt_Rf, SMB , and HML ), the 

Carhart (1997) momentum factor ( UMD ), and the Da et al., (2014) 

short-run reversal factor ( ST_Rev ). Newey and West (1987) standard 

errors are applied to compute the t- statistics. The sample period 

ranges from September 2008 to September 2020. ∗p < 0.1; ∗∗p < 

0.05; ∗∗∗p < 0.01. 

Panel A: Summary statistics of trading strategies 

Strategy N Mean t-stat Std dev SR 

PhotoPes 1992 0.058 3.251 1.119 0.052 

TextPes 1891 0.037 2.085 1.166 0.032 

Combined 1221 0.054 3.547 0.980 0.055 

Index 3034 0.047 2.246 1.325 0.036 

Panel B: Time series regression 

(1) (2) 

Combined strategy t PhotoPesstrategy t 

Variables β t- stat β t- stat 

Alpha 0.021 ∗ 1.742 0.014 1.302 

Mkt_Rf t 51.0 ∗∗∗ 13.347 69.4 ∗∗∗ 22.912 

SMB t -1.830 -0.317 -6.612 -1.418 

HML t -15.6 ∗∗∗ -3.517 -13.9 ∗∗∗ -3.799 

UMD t -4.947 ∗ -1.743 -5.489 ∗∗ -2.121 

ST_Rev t 6.754 ∗ 1.708 3.252 1.002 

Adj. R -squared 0.545 0.706 

N 3034 3034 
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3.2. Validation of PhotoPes 

3.2.1. Limits to arbitrage 

Next, we focus on how limits to arbitrage affect the 

relation between PhotoPes and the market returns docu- 

mented earlier. Limits to arbitrage suggest that correct- 

ing mispricing in the market is risky, and, thus, mispric- 

ing can take an extended period to correct ( Shleifer and 

Vishny, 1997 ; Chu et al., 2020 ). De Long et al. (1990) sug- 

gest that investor sentiment should have the strongest 

effect on stocks that are the most difficult to arbitrage, 

while D’Avolio (2002) finds that arbitrage is riskier and 

costlier for riskier stocks than for safer stocks. Motivated 

by Wurgler and Zhuravskaya (2002) and Baker and Wur- 

gler (2006) , we focus on idiosyncratic volatility-sorted 

portfolios and size-sorted portfolios to test the prediction 

that PhotoPes should have the biggest impact on difficult- 

to-value or the riskiest stocks. 

To test whether PhotoPes relates to stock returns differ- 

ently depending on limits to arbitrage, we run the follow- 

ing regression: 

R t = β1 L 5 ( P hotoP e s t ) + β2 L 5 ( R t ) + β3 L 5 

(
R 

2 
t 

)
+ β4 X t + ε t , 

(7) 

where R t denotes the value-weighted daily returns 

on the highest and lowest quintile portfolios and 

the spread between the two portfolios ( High-low ) 

sorted on idiosyncratic volatility and size. More 

specifically, we sort stocks in the CRSP universe into 

quintile portfolios based on idiosyncratic volatility 

estimated with the capital asset pricing model (CAPM) 

using the past 36-month returns (Panel A, Table 8 ). Next, 

we sort stocks in the CRSP universe into quintile portfolios 
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Table 8 

Validation test. 

This table reports the results of β1 from the following time series regression: 

R t = β1 L 5( PhotoPe s t ) + β3 L 5( R t ) + β4 L 5( R 2 t ) + β5 X t + ε t , 

where R t is the log value-weighted daily return on the top ( High ) and bottom ( Low ) quintile portfolios sorted on monthly idiosyncratic volatility ( VW 

Idvol ) using the CAPM (Panel A), idiosyncratic volatility using the Fama and French (1993) factors ( FF ) and the Carhart (1997) momentum factor ( UMD ) 

(Panel B), and firm size (Panel C). High-low is the difference between highest and lowest quintile portfolio return. PhotoPe s t is calculated as the proportion 

of photos predicted to be negative at time t ; L 5 transforms a variable into a row vector consisting of five lags of that variable; and X t contains a set of 

exogenous variables including a constant term, day-of-the-week dummies (except for Monday), and a recession dummy. PhotoPes is winsorized at the 1% 

level and standardized to have a zero mean and unit variance. We use news photos that belong to articles from the following WSJ sections: “Business,”

“Economy,” “Markets,” “Politics,” and “Opinion.” The sample period ranges from September 2008 to September 2020. Newey and West (1987) standard 

errors are applied to compute the t -statistics. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. 

Panel A: VW Idvol (CAPM) t 

(1) (2) (3) 

High Low High-low 

Variables β t- stat β t- stat β t- stat 

PhotoPes t-1 -0.071 ∗∗ -2.182 -0.035 ∗ -1.852 -0.040 ∗∗ -1.986 

PhotoPes t-2 0.107 ∗∗∗ 2.833 0.042 ∗ 1.902 0.061 ∗∗∗ 2.810 

PhotoPes t-3 -0.044 -1.241 -0.030 -1.481 -0.008 -0.381 

PhotoPes t-4 0.061 ∗ 1.745 0.029 1.518 0.028 1.292 

PhotoPes t-5 0.064 ∗ 1.778 0.047 ∗∗ 2.043 0.019 0.867 

Sum t-1 to t-5 0.117 0.053 0.060 

Sum t-2 to t-5 0.188 0.088 0.100 

χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value 

χ2 (1)[Sum t-1 to t-5 = 0] 3.431 ∗ 0.064 2.054 0.152 2.454 0.117 

χ2 (1)[Sum t-2 to t-5 = 0] 9.441 ∗∗∗ 0.002 6.304 ∗∗ 0.012 7.121 ∗∗∗ 0.008 

Adj. R -squared 0.026 0.030 0.028 

N 3044 3044 3044 

Panel B: VW Idvol (FF + UMD) t 

(1) (2) (3) 

High Low High-low 

Variables β t- stat β t- stat β t- stat 

PhotoPes t-1 -0.066 ∗∗ -2.073 -0.037 ∗ -1.828 -0.035 ∗ -1.854 

PhotoPes t-2 0.102 ∗∗∗ 2.759 0.045 ∗ 1.942 0.052 ∗∗ 2.512 

PhotoPes t-3 -0.049 -1.387 -0.027 -1.300 -0.014 -0.722 

PhotoPes t-4 0.063 ∗ 1.871 0.032 1.633 0.028 1.344 

PhotoPes t-5 0.062 ∗ 1.791 0.049 ∗∗ 2.051 0.015 0.736 

Sum t-1 to t-5 0.112 0.062 0.046 

Sum t-2 to t-5 0.178 0.099 0.081 

χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value 

χ2 (1)[Sum t-1 to t-5 = 0] 3.412 ∗ 0.065 2.691 0.101 1.560 0.212 

χ2 (1)[Sum t-2 to t-5 = 0] 9.026 ∗∗∗ 0.003 7.362 ∗∗∗ 0.007 5.133 ∗∗ 0.023 

Adj. R -squared 0.028 0.032 0.027 

N 3044 3044 3044 

Panel C: VW size t 

(1) (2) (3) 

Large Small Large-small 

Variables β t- stat β t- stat β t- stat 

PhotoPes t-1 -0.041 ∗ -1.825 -0.073 ∗∗ -2.452 0.033 ∗∗ 1.984 

PhotoPes t-2 0.046 ∗ 1.776 0.063 ∗ 1.914 -0.011 -0.704 

PhotoPes t-3 -0.028 -1.163 -0.026 -0.810 -0.005 -0.296 

PhotoPes t-4 0.025 1.110 0.023 0.779 0.0 0 0 0.026 

PhotoPes t-5 0.055 ∗∗ 2.080 0.075 ∗∗ 2.325 -0.016 -1.088 

Sum t-1 to t-5 0.057 0.062 0.001 

Sum t-2 to t-5 0.098 0.135 -0.032 

χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value 

χ2 (1)[Sum t-1 to t-5 = 0] 1.805 0.179 1.311 0.252 0.001 0.970 

χ2 (1)[Sum t-2 to t-5 = 0] 5.796 ∗∗ 0.016 6.648 ∗∗∗ 0.010 1.482 0.224 

Adj. R -squared 0.036 0.043 0.013 

N 3044 3044 3044 

289 
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based on idiosyncratic volatility estimated with a model

consisting of the Fama and French (1993) three factors

and the Carhart (1997) momentum factor using the past

36-month returns (Panel B). Finally, we sort stocks into

quintile portfolios based on market capitalization of the

firm (Panel C). 

The first two specifications of Panel A in Table 8 show

that P hotoPe s t−1 is negatively related to returns on the

highest and lowest idiosyncratic volatility (CAPM)-sorted

portfolios. The magnitude of the effect is larger and more

significant for the highest idiosyncratic volatility-sorted

portfolio compared to the lowest idiosyncratic volatility-

sorted portfolio (over two time larger). Specifically, the av-

erage impact of a one standard deviation shift in PhotoPes

on the next day’s return on the highest and lowest id-

iosyncratic volatility-sorted portfolio is 7.1 (significant at

the 5% level) and 3.5 (significant at the 10% level) bps, re-

spectively. We examine the lags of PhotoPes to determine

whether a reversal of the initial effect occurs in the follow-

ing trading week. A clear and significant reversal pattern

is significant at the 1% level for the highest idiosyncratic

volatility-sorted portfolio and at the 5% level for the low-

est idiosyncratic volatility-sorted portfolio. It is noteworthy

that there is an overreaction in the reversal for the highest

idiosyncratic volatility portfolio, but not for the lowest id-

iosyncratic portfolio. This overreaction can be attributed to

stocks with the highest idiosyncratic volatility being more

difficult to value, a fact that makes correcting mispricing

difficult to do ( Wurgler and Zhuravskaya, 2002 ). 

To test whether the effect of sentiment on stock returns

is stronger for the highest idiosyncratic volatility stocks

compared to the lowest idiosyncratic volatility stocks, we

regress the difference between the returns on the highest

and lowest idiosyncratic volatility quintile portfolios (H-

L) on lags of PhotoPes and controls. We show the results

from this regression in the third specification of Panel A

in Table 8 . The coefficient for P hotoPe s t−1 is negative and

significant at the 5% level, suggesting that PhotoPes has a

stronger impact on the next day’s returns for the highest

compared with the lowest idiosyncratic volatility stocks. 

In Panel B of Table 8 , we find results similar to those

in Panel A. More specifically, PhotoPes has a stronger im-

pact on the next day’s returns for the highest compared

to the lowest idiosyncratic volatility-sorted portfolios when

we estimate idiosyncratic volatility using the model with

the Fama and French (1993) and Carhart (1997) momen-

tum factors. 

In Panel C of Table 8 , we examine the relation between

PhotoPes and the returns for portfolios sorted on firm size.

In the third specification of Panel C, we find that Pho-

toPes has a stronger impact on small companies compared

to large companies. This evidence is consistent with our

results using idiosyncratic volatility because small firms

are more difficult to arbitrage compared to large firms

( Baker and Wurgler, 2006 ). The key point of the results in

Table 8 is that PhotoPes has a stronger impact on stocks

that are difficult to arbitrage. 

3.2.2. Out-of-sample analysis 

Although the in-sample analysis provides more ef-

ficient parameter estimates and thus more precise re-
290 
turn forecasts by utilizing all available data, Goyal and 

Welch (2008) , among others, argue that out-of-sample 

tests are more appropriate to avoid the in-sample over- 

fitting issue. Moreover, our out-of-sample tests are much 

less affected by the small-sample size distortions, such as 

the Stambaugh bias ( Busetti and Marcucci, 2012 ). Hence, 

we examine the out-of-sample predictive performance of 

PhotoPes . Following Goyal and Welch (2008) , Kelly and 

Pruitt (2013) , Rapach et al., (2016) , and many others, we 

evaluate the out-of-sample predictive performance based 

on the widely used Campbell and Thompson (2008) R 2 OOS 
statistic and the Clark and West (2007) MSPE-adjusted 

statistic. The R 2 
OOS 

statistic measures the proportional 

reduction in the mean-squared prediction error (MSPE) for 

the predictive regression relative to the historical average 

benchmark: 

R 

2 
OOS = 1 −

∑ T 
t=1 

(
R t − ˆ R t 

)2 

∑ T 
t=1 

(
R t − R̄ t 

)2 
, (8) 

where ˆ R t is the fitted value from a predictive regression 

of market returns on a one-period lag of PhotoPes esti- 

mated recursively with information available at time t -1. 

R̄ t denotes the historical average benchmark estimated 

through period t -1 from the constant expected return 

model ( R t = α + ε t ). More specifically, we use the data 

from September 2008 to December 2009 as the initial 

estimation period so that the prediction evaluation period 

spans from January 2010 to September 2020. The initial 

in-sample estimation period balances between the desire 

to have enough observations to precisely estimate the 

initial parameters and the desire for a relatively long 

out-of-sample period for evaluation. 

Goyal and Welch (2008) show that the historical aver- 

age is a very stringent out-of-sample benchmark, and indi- 

vidual economic variables typically fail to outperform the 

historical average. The R 2 OOS statistic lies in the range (- 

∞ , 1] . If R 2 
OOS 

> 0, it means that the predicted 

ˆ R t outper- 

forms the historical average R̄ t in terms of MSPE. 

The second statistic is the MSPE-adjusted statistic of 

Clark and West (2007) (henceforth, CW test). The null hy- 

pothesis is that the historical average MSPE is less than or 

equal to the predictive regression MSPE. The null hypoth- 

esis is tested against the one-sided (upper-tail) alterna- 

tive hypothesis that the historical average MSPE is greater 

than the predictive regression MSPE, corresponding to H 0 : 

R 2 
OOS 

≤ 0 against H A : R 
2 
OOS 

> 0 . The MSPE-adjusted statistic 

accounts for the negative expected difference between the 

historical average MSPE and predictive regression MSPE 

under the null, so that it can reject the null even if the 

R 2 
OOS 

statistic is negative. Our results in Table 9 show R 2 
OOS 

is positive and significant according to the CW test. Across 

all test assets, R 2 
OOS 

ranges between 0.123 and 0.302% 

and is significant at the 1% level according to the CW 

test. 

To assess the economic usefulness of PhotoPes in 

predicting returns, we follow Campbell and Thomp- 

son (2008) and Rapach et al., (2016) , among others, and 

compute the certainty equivalent return (CER) gain and 

Sharpe ratio for a mean-variance investor who allocates 

between equity index and risk-free assets (30-day Treasury 
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Table 9 

Out-of-sample analysis. 

This table reports R 2 OOS (out-of-sample R 2 ) as a percentage and the associated p -values using 

the MSPE-adjusted statistic in Clark and West (2007) for recursively estimated predictive re- 

gression of the CRSP value-weighted ( VWRETD ) index, the S&P 500 Index ( SPX ), the SPDR S&P 

500 ETF ( SPY ), the Dow Jones Industrial Average Index ( INDU ), or the SPDR Dow Jones Indus- 

trial Average ETF ( DIA ) on a one-period lag of PhotoPes . We use data between September 2008 

and December 2009 for the initial estimation period. The sample period ranges from Septem- 

ber 2008 to September 2020. Clark-West (2007) MSPE-adjusted statistic that tests the null 

of R 2 OOS ≤ 0 against the alternative R 2 OOS > 0 is applied to test for significance. ∗p < 0.1; ∗∗p 

< 0.05; ∗∗∗p < 0.01. The CER gain is the annualized certainty equivalent return gain for the 

investor. The Sharpe ratio ( PhotoPes ) is the average portfolio return using the predictive re- 

gression forecast based on PhotoPes net the risk-free rate divided by the standard deviation of 

the excess portfolio return. The Sharpe ratio (historical) is the average portfolio return using 

the historical average return forecast net the risk-free rate divided by the standard deviation 

of the excess portfolio return. 

Return R 2 OOS (%) CER gain (%) Sharpe ratio (PhotoPes) Sharpe ratio (historical) 

VWRETD 0.251 ∗∗∗ 1.439 0.470 0.380 

SPX 0.162 ∗∗∗ 1.150 0.441 0.304 

SPY 0.302 ∗∗∗ 1.290 0.490 0.400 

INDU 0.123 ∗∗∗ 1.042 0.396 0.224 

DIA 0.158 ∗∗∗ 1.420 0.490 0.380 
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Table 10 

PhotoPes and trading volume. 

This table reports β1 to β2 from the following time series regression: 

V̄ t = β1 L 5( PhotoPe s t ) + β2 L 5( | PhotoPe s t | ) + β3 L 5( R t ) + β4 L 5( R 2 t ) + ε t , 

where V̄ t is the standardized (zero mean, unit variance) residual from 

regressing the log of aggregate NYSE trading volume on its own lags 

(five lags) and month- and day-of-the-week dummies; R t is the log 

daily return on the CRSP value-weighted index; PhotoPe s t is calculated 

as the proportion of photos predicted to be negative at time t ; and 

| PhotoPe s t | is the absolute value of standardized PhotoPes (with zero 

mean and unit variance). In both panels, L 5 transforms a variable into 

a row vector consisting of five lags of that variable. PhotoPes is win- 

sorized at the 1% level and standardized to have a zero mean and unit 

variance. We use news photos that belong to articles from the following 

WSJ sections: “Business,” “Economy,” “Markets,” “Politics,” and “Opin- 

ion.” The sample period ranges from September 2008 to September 

2020. Newey and West (1987) standard errors are applied to compute 

the t- statistics. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. 

V̄ t 

Variables β t- stat 

PhotoPes t-1 -0.003 -0.157 

PhotoPes t-2 -0.006 -0.278 

PhotoPes t-3 0.014 0.686 

PhotoPes t-4 -0.015 -0.786 

PhotoPes t-5 -0.011 -0.582 

|PhotoPes t-1 | 0.080 ∗∗∗ 2.912 

|PhotoPes t-2 | 0.013 0.453 

|PhotoPes t-3 | 0.008 0.237 

|PhotoPes t-4 | 0.059 ∗∗ 2.059 

|PhotoPes t-5 | 0.015 0.511 

Adj. R -squared 0.023 

N 3044 
bills) using the out-of-sample predictive regression fore-

casts, ˆ R t . At end of period t -1, the investor allocates w t−1

to the equity index during period t following: 

w t−1 = 

1 

γ

ˆ R t 

ˆ σ 2 
t 

, (9)

where γ is the risk aversion coefficient of three, and ˆ σ 2 
t is

the variance forecast estimated over an expanding window

of historical returns. The investor allocates the remaining

capital, 1 − w t−1 , in the risk-free asset. 

The CER of the portfolio is: 

ER = ˆ μ − 1 

2 

γ ˆ σ 2 , (10)

where ˆ μ and ˆ σ 2 are the average and variance, respectively,

of the investor’s portfolio over our evaluation window. The

CER gain is the difference between the CER for an investor

who allocates according to the predictive regression fore-

cast based on PhotoPes , ˆ R t , and the CER for an investor who

allocates according to the historical average return forecast,

R̄ t . We multiply the CER gain by 250 to annualize the CER

gain. 

In Table 9 , we report positive CER gain for all five in-

dices between 1.042 and 1.439%. The CER gain is what an

investor should be willing to pay in portfolio management

fees to have access to the predictive regression forecast

based on PhotoPes instead of the historical average return

forecast. We also report the Sharpe ratio of the portfolio

using the predictive regression forecast based on PhotoPes

and the portfolio using the historical average return fore-

cast. The Sharpe ratio is computed as the mean portfolio

return net the risk-free rate divided by the standard devia-

tion of the excess portfolio return. In Table 9 , we note that

the Sharpe ratios of the portfolio using the predictive re-

gression forecast based on PhotoPes are notably higher than

the Sharpe ratios of the portfolio using the historical aver-

age return forecast. 
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3.3. The impact of PhotoPes on trading volume 

Another channel through which PhotoPes can affect 

market activity is trading volume. In Table 10 , we exam- 

ine whether the NYSE aggregate trading volume is related 

to PhotoPes . This channel helps us determine whether Pho- 

toPes is a proxy for trading costs or investors’ beliefs. Be- 
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havioral models, such as those of De Long et al. (1990) and

Campbell et al. (1993) , predict that a shock to senti-

ment indicates disagreement between rational and noise

investors, and disagreement leads to an increase in trading.

As the market absorbs these orders, we should see that a

high or low value for PhotoPes is related to an increase in

trading volume. On the other hand, if PhotoPes is a proxy

for transaction costs, we expect to find a negative relation

between PhotoPes and trading volume ( Tetlock, 2007 ). 

To remove time trends in trading volume, we model

trading volume as follows: 

 t = βL 5 ( V t ) + γ X t + ε t , (11)

where V t denotes the log of the aggregate daily NYSE trad-

ing volume. We take the residual from the above equa-

tion, ε t , normalize it to have unit variance and mean of

zero, and use it as the key dependent variable in the re-

gressions below ( ̄V t ). This procedure is intended to re-

move any calendar or day-of-the-week effects, in addition

to the time trend. These are not the intended effects we

attempt to explain using PhotoPes . Gallant et al. (1992) and

Garcia (2013) use a similar method to remove the time

trend and other effects in the daily volume data. To test

how PhotoPes is related to trading volume, we follow

Tetlock (2007) and run the following model: 

¯
 t = β1 L 5 ( P hotoP e s t ) + β2 L 5 ( | P hotoP e s t | ) + β3 L 5 ( R t ) 

+ β4 L 5 

(
R 

2 
t 

)
+ ε t , (12)

where V̄ t is standardized (zero mean, unit variance) resid-

ual from Eq. (11) and | P hotoPe s t | is the absolute value of

PhotoPes after it is standardized to a mean of zero (high

values of | P hotoPe s t | will indicate days with either un-

usually large positive or unusually negative sentiment).

Table 10 shows the coefficients for | P hotoPe s t−1 | are pos-

itive and significant at the 1% level, suggesting that either

high or low values of pessimism in photos are able to pre-

dict an increase in the next day’s abnormal trading volume.

In terms of magnitude, a one standard deviation increase

in PhotoPes is associated with a moving future trading vol-

ume of 0.080 standard deviations. Because we find that

low or high values of PhotoPes predict an increase in trad-

ing volume, our evidence is consistent with the behavioral

story and inconsistent with PhotoPes capturing transaction

costs. Overall, our evidence on trading volume is consistent

with that of Tetlock (2007) and Garcia (2013) . 

3.4. Robustness 

Table A2 reports the results from the main regression

for Table 2 , except we make modifications to PhotoPes. In

the original PhotoPes , a photo is labeled negative if the

probability cutoff for Ne g it is above 50%. In the regressions

for Panel A of Table A2 , we adjust the cutoff for Ne g it from

50% to 55%. Looking at the five specifications of Panel A,

we note that the return reversal results documented ear-

lier, for instance, in Table 2 , still hold with similar mag-

nitudes. 21 In the regressions for Panel B of Table A2 , we
21 In Table 2 , Panel B, our results are robust to using the predicted likeli- 

hood a photo relays a negative sentiment instead of an indicator variable 

based on a specific cutoff. 
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modify PhotoPes by not winsorizing the variable. We note 

that the results are similar. 

One could be concerned that periods of high volatility 

are driving our results. Cox and Peterson (1994) show that 

extreme price returns are followed by short-term price re- 

versals. Moreover, Connolly and Stivers (2003) find that 

weeks with extreme return-dispersion shocks tend to have 

a high number of macroeconomic news releases. In ad- 

dition to including a recession indicator, we alleviate this 

concern in the following ways. First, we use GARCH (1,1)- 

adjusted-returns as our dependent variable. We calculate 

GARCH-adjusted returns by normalizing returns by the es- 

timated GARCH (1,1) volatility, ˆ σ . The normalization of the 

returns gives us a time series of returns with volatility nor- 

malized to one. In Panel C of Table A2 , we continue to find 

that PhotoPes negatively predicts the next day’s GARCH- 

adjusted returns in all five test assets. Moreover, we find 

significant reversal between lags 2 and 5 in all five specifi- 

cations. 

Past extreme negative returns might be predictive for 

future large negative returns. To alleviate concerns that 

the explanatory power of PhotoPes is subsumed by this ef- 

fect, we remove the 1% (Panel D in Table A2 ) of the most 

extreme returns from our sample (trim 0.5% from both 

ends of the returns distribution). We continue to find that 

P hotoPe s t−1 is negatively related to market returns. Exam- 

ining the chi-square tests, we note significant reversal (the 

sum of coefficients between t − 2 and t − 5) for all five 

test assets. In all specifications, we find the sum of the co- 

efficients between t − 1 and t − 5 is not significantly dif- 

ferently from zero, suggesting a complete reversal within 

five days after the news photo is published. However, it is 

noteworthy that the results when we remove extreme re- 

turns or adjust for volatility (in Panels C and D) present an 

oscillating sign; specifically, there is a significant negative 

coefficient for day t − 3. We hesitate to make any conjec- 

ture or draw any conclusion without a deep investigation. 

4. Conclusion 

In this paper, we use a machine learning technique to 

extract information from a large sample of news media im- 

ages and translate that information into a daily investor 

sentiment index, PhotoPes . We make three important con- 

tributions to the literature. First, we document that Pho- 

toPes predicts market return reversals. This return rever- 

sal pattern is consistent with sentiment-induced transient 

mispricing ( De Long et al., 1990 ; Campbell et al., 1993 ). 

This relation is strongest for difficult-to-arbitrage stocks. 

Moreover, we show that PhotoPes can predict market trad- 

ing volume. 

Second, we show that the pessimism embedded in pho- 

tos and the pessimism embedded in news text act as sub- 

stitutes for each other in predicting returns. Moreover, the 

pessimism embedded in news photos serves to grab at- 

tention away from text during periods when photos are 

salient. Our evidence shows that PhotoPes is especially use- 

ful for predicting market returns during periods of elevated 

fear. 

Third, we demonstrate the benefit of using cutting- 

edge photo classification techniques to study how the 
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information obtained from a large sample of news pho-

tos is relevant to the context of financial markets. Rely-

ing on surveys or crowd-sourcing websites (e.g., MTurk) to

evaluate photos has shortcomings that make it infeasible

to study large amounts of photos. However, with the con-

tinued focus on artificial intelligence, the machine learning

techniques for analyzing photos are bound to grow in pop-

ularity and improve. This technological development will

improve our ability to translate the rich information em-
293 
bedded in the billions of photos uploaded online into in- 

sights about central issues in financial research that have 

implications in both corporate finance and asset pricing. 

In an increasingly multimodal media reality, future re- 

searchers should attempt to advance the machine learn- 

ing technique of photo classification. Doing so could help 

bridge the gap between photo and text classification mod- 

els, to better capture sentiment, and to determine the 

other important content embedded in news photos. 

Appendix 
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Table A1 

Photos with the highest probability of negative and positive sentiment. 

This table presents the 20 photos that have the highest PhotoNeg or the highest probability of having 

negative sentiment (top) and the 20 photos that have the lowest PhotoNeg or the highest probability of 

having positive sentiment (bottom). TextNeg , presented at the end of the table, is the pessimism score 

for the text from the headline and article summary associated with each photo. Pessimism in text is 

measured using Stanford’s CoreNLP software. News photos come from WSJ articles that appeared in the 

following WSJ sections: “Business,” “Economy,” “Markets,” “Politics,” and “Opinion.”. 
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Table A2 

Robustness test. 

This table reports results of β1 from the following time series regression: 

R t = β1 L 5( PhotoPe s t ) + β2 L 5( R t ) + β3 L 5( R 2 t ) + β5 X t + ε t , 

where R t is log daily return on the CRSP value-weighted (VWRETD t ) index, the S&P 500 Index (SPX t ), the SPDR S&P 500 ETF (SPY t ), the Dow Jones Industrial 

Average Index (INDU t ), and the SPDR Dow Jones Industrial Average ETF (DIA t ). PhotoPe s t is calculated as the proportion of photos predicted to be negative 

at time t (modified in several ways as discussed below); L 5 transforms a variable into a row vector consisting of five lags of that variable; and X t contains 

a set of exogenous variables including a constant term, day-of-the-week dummies (except for Monday), and a recession dummy. Panel A presents results 

when the probability cutoff for Ne g it changes from 50 to 55%. Panel B presents results when PhotoPes is not winsorized. In the regressions for Panel C, R t 
is normalized log-returns. We normalize returns by dividing them by the estimate’s volatility from the GARCH (1,1) model. In the regressions for Panel D, 

we remove the 1% most extreme returns in our sample. PhotoPes in all but Panel B is winsorized at the 1% level. We use news photos that come from 

articles that appeared in the following sections: “Business,” “Economy,” “Markets,” “Politics,” and “Opinion.” PhotoPes is standardized to have a zero mean 

and unit variance. The sample period ranges from September 2008 to September 2020. Newey and West (1987) standard errors are applied to compute 

the t -statistics. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. 

Panel A: Cutoff = {0.55,0.45} 

(1) (2) (3) (4) (5) 

VWRETD t SPX t SPY t INDU t DIA t 

Variables β t -stat β t -stat β t -stat β t -stat β t -stat 

PhotoPes t-1 -0.040 ∗ -1.705 -0.038 ∗ -1.652 -0.038 ∗ -1.680 -0.044 ∗∗ -2.059 -0.046 ∗∗ -2.140 

PhotoPes t-2 0.043 ∗ 1.685 0.038 1.515 0.036 1.463 0.032 1.355 0.029 1.223 

PhotoPes t-3 -0.024 -0.977 -0.022 -0.885 -0.025 -1.040 -0.017 -0.727 -0.019 -0.830 

PhotoPes t-4 0.038 1.605 0.033 1.391 0.035 1.520 0.039 ∗ 1.784 0.043 ∗ 1.932 

PhotoPes t-5 0.049 ∗ 1.783 0.051 ∗ 1.874 0.049 ∗ 1.837 0.047 ∗ 1.818 0.045 ∗ 1.759 

Sum t-1 to t-5 0.066 0.062 0.057 0.057 0.052 

Sum t-2 to t-5 0.106 0.100 0.095 0.101 0.098 

χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value 

χ2 (1)[Sum t-1 to t-5 = 0] 2.116 0.146 1.900 0.168 1.675 0.196 1.803 0.179 1.520 0.218 

χ2 (1)[Sum t-2 to t-5 = 0] 6.118 ∗∗ 0.013 5.591 ∗∗ 0.018 5.223 ∗∗ 0.022 6.366 ∗∗ 0.012 5.969 ∗∗ 0.015 

Adj. R -squared 0.029 0.035 0.028 0.039 0.038 

N 3044 3044 3044 3044 3044 

Panel B: No winsorization 

(1) (2) (3) (4) (5) 

VWRETD t SPX t SPY t INDU t DIA t 

Variables β t- stat β t- stat β t- stat β t- stat β t- stat 

PhotoPes t-1 -0.044 ∗ -1.819 -0.043 ∗ -1.792 -0.043 ∗ -1.797 -0.049 ∗∗ -2.194 -0.049 ∗∗ -2.188 

PhotoPes t-2 0.061 ∗∗ 2.126 0.057 ∗∗ 2.025 0.055 ∗ 1.915 0.049 ∗ 1.842 0.044 ∗ 1.661 

PhotoPes t-3 -0.025 -0.911 -0.021 -0.781 -0.025 -0.971 -0.014 -0.545 -0.017 -0.646 

PhotoPes t-4 0.025 1.039 0.018 0.764 0.022 0.965 0.023 0.995 0.026 1.146 

PhotoPes t-5 0.053 ∗ 1.880 0.056 ∗∗ 2.031 0.052 ∗ 1.903 0.054 ∗∗ 2.029 0.051 ∗ 1.910 

Sum t-1 to t-5 0.070 0.067 0.061 0.063 0.055 

Sum t-2 to t-5 0.114 0.110 0.104 0.112 0.104 

χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value 

χ2 (1)[Sum t-1 to t-5 = 0] 2.195 0.138 2.094 0.148 1.750 0.186 2.014 0.156 1.684 0.194 

χ2 (1)[Sum t-2 to t-5 = 0] 6.408 ∗∗ 0.011 6.178 ∗∗ 0.013 5.525 ∗∗ 0.019 7.02 ∗∗∗ 0.008 6.245 ∗∗ 0.012 

Adj. R -squared 0.030 0.036 0.028 0.039 0.038 

N 3044 3044 3044 3044 3044 

Panel C: GARCH-adjusted returns 

(1) (2) (3) (4) (5) 

VWRETD t SPX t SPY t INDU t DIA t 

Variables β t- stat β t- stat β t- stat β t- stat β t- stat 

PhotoPes t-1 -0.036 ∗ -1.948 -0.036 ∗ -1.959 -0.035 ∗ -1.935 -0.042 ∗∗ -2.348 -0.043 ∗∗ -2.372 

PhotoPes t-2 0.042 ∗∗ 2.203 0.041 ∗∗ 2.172 0.041 ∗∗ 2.162 0.042 ∗∗ 2.205 0.044 ∗∗ 2.273 

PhotoPes t-3 -0.042 ∗∗ -2.219 -0.042 ∗∗ -2.178 -0.043 ∗∗ -2.267 -0.042 ∗∗ -2.187 -0.043 ∗∗ -2.261 

PhotoPes t-4 0.028 1.542 0.024 1.354 0.026 1.465 0.032 ∗ 1.763 0.033 ∗ 1.841 

PhotoPes t-5 0.037 ∗ 1.936 0.037 ∗∗ 1.963 0.036 ∗ 1.886 0.031 1.643 0.029 1.525 

Sum t-1 to t-5 0.029 0.024 0.025 0.021 0.020 

Sum t-2 to t-5 0.065 0.060 0.060 0.063 0.063 

χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value χ2 (1) p -value 

χ2 (1)[Sum t-1 to t-5 = 0] 0.673 0.412 0.528 0.468 0.498 0.480 0.370 0.543 0.330 0.566 

χ2 (1)[Sum t-2 to t-5 = 0] 3.884 ∗∗ 0.049 3.539 ∗ 0.060 3.392 ∗ 0.066 3.906 ∗∗ 0.048 3.778 ∗ 0.052 

Adj. R- squared 0.009 0.009 0.009 0.010 0.010 

N 3044 3044 3044 3044 3044 

( Continued in next page ) 
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Table A2 

( Continue ). 

Panel D: Trim 1% of the most extreme returns 

(1) (2) (3) (4) (5) 

VWRETD t SPX t SPY t INDU t DIA t 

Variables β t- stat β t- stat β t- stat β t- stat β t- stat 

PhotoPes t-1 -0.047 ∗∗ -2.238 -0.046 ∗∗ -2.221 -0.045 ∗∗ -2.192 -0.047 ∗∗ -2.384 -0.043 ∗∗ -2.201 

PhotoPes t-2 0.040 ∗ 1.837 0.040 ∗ 1.844 0.040 ∗ 1.860 0.028 1.372 0.032 1.625 

PhotoPes t-3 -0.044 ∗ -1.909 -0.038 ∗ -1.660 -0.037 ∗ -1.685 -0.034 -1.615 -0.035 ∗ -1.703 

PhotoPes t-4 0.041 ∗∗ 2.062 0.037 ∗ 1.902 0.043 ∗∗ 2.217 0.037 ∗∗ 1.979 0.043 ∗∗ 2.326 

PhotoPes t-5 0.035 1.547 0.042 ∗ 1.883 0.032 1.480 0.035 ∗ 1.685 0.018 0.898 

Sum t-1 to t-5 0.025 0.035 0.033 0.019 0.015 

Sum t-2 to t-5 0.072 0.081 0.078 0.066 0.058 

χ 2 (1) p -value χ 2 (1) p -value χ 2 (1) p -value χ 2 (1) p -value χ 2 (1) p -value 

χ 2 (1)[Sum t-1 to t-5 = 0] 0.436 0.509 0.808 0.369 0.722 0.396 0.266 0.606 0.192 0.661 

χ 2 (1)[Sum t-2 to t-5 = 0] 3.982 ∗∗ 0.046 5.019 ∗∗ 0.025 4.698 ∗∗ 0.030 3.804 ∗ 0.051 3.047 ∗ 0.081 

Adj. R -squared 0.018 0.023 0.023 0.024 0.025 

N 3012 3012 3012 3013 3012 
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